Cr和Si元素对奥氏体不锈钢组织构成及凝固路线的影响
Effects of Cr and Si on the microstructure and solidification path of austenitic stainless steel
查看参考文献24篇
文摘
|
以316Ti奥氏体不锈钢为基础,设计不同Cr和Si元素含量的合金成分,结合Thermal-Calc热力学模拟计算与合金铸锭凝固组织形貌、成分分析,研究了Cr和Si元素对合金凝固组织构成的影响.研究结果表明,热力学计算能够获得奥氏体不锈钢中析出δ 相的临界Cr和Si含量.合金凝固时的元素偏析和冷却过程中的“δ→γ”相变可对δ 相析出预测产生一定影响.此外,本工作还针对δ 相析出评价了两种凝固路线判据. |
其他语种文摘
|
The lead-cooled fast reactor (LFR),which features advanced technical maturity and enhanced safety,is an important part of the fourth-generation nuclear power system of China.The superior safety of the LFR results from the choice of a relatively inert coolant,the lead or lead-bismuth eutectic (LBE),which can be rather corrosive to common metallic structural materials.Furthermore,there is basically no cladding material available for the LFR.Austenitic stainless steels feature a combination of excellent corrosion resistance,proper strength,and good workability,and materials such as 316Ti and 15-15Ti,which have been used in the sodium-cooled fast reactor (SFR),are viewed as promising candidate materials for LFR cladding applications.Elements of Cr and Si have been found capable of improving the corrosion resistance of 316Ti and 15-15Ti to LBE.However,as ferrite-forming elements,the influences of Cr and Si on the microstructural stability of 316Ti and 15-15Ti are still unclear.In this work,316Ti-based materials with various Cr and Si contents were studied through thermodynamic simulation and microstructural characterization.Specifically,the equilibrium phase constitutions of the austenitic stainless steels were investigated by thermodynamic simulation using Thermo-Calc.The solidification microstructures and precipitates of Cr-and Si-bearing austenitic stainless steels were studied by optical microscopy (OM),scanning electronic microscopy (SEM),electronic differential system (EDS),and X-ray diffraction (XRD).The results show that Cr and Si can decrease the solidus and liquidus temperatures of alloys and induce the precipitation of δ-phase.For alloy 18Cr–2.0Si–15Ni,the maximum contents of Cr and Si are determined to be no more than 18.8% and 2.55%,respectively,which hinders δ-phase precipitation.In the ingot of 20Cr–2.0Si,δ-phase is found to be located within dendrites in a skeleton morphology,with a volume fraction of 8.6%,whereas in the ingot of 18Cr–2.5Si,δ-phase precipitates between dendrites,with a volume fraction of 3.4%.Moreover,this work also evaluates two kinds of austenitic stainless steel solidification path criteria. |
来源
|
工程科学学报
,2020,42(2):179-185 【扩展库】
|
DOI
|
10.13374/j.issn2095-9389.2019.02.24.003
|
关键词
|
奥氏体不锈钢
;
热力学模拟
;
凝固组织
;
δ 相
;
硅元素
|
地址
|
1.
中广核研究院有限公司, 深圳, 518000
2.
中国科学院金属研究所, 中国科学院核用材料与安全评价重点实验室, 沈阳, 110016
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
2095-9389 |
学科
|
金属学与金属工艺 |
基金
|
辽宁省自然科学基金
|
文献收藏号
|
CSCD:6677148
|
参考文献 共
24
共2页
|
1.
程学群. 316L不锈钢在含Cl^-高温醋酸溶液中的电化学行为.
金属学报,2006,42(3):299
|
CSCD被引
12
次
|
|
|
|
2.
柳曾典. 常用铬镍奥氏体不锈钢的选用.
石油化工设备技术,1999,20(3):39
|
CSCD被引
4
次
|
|
|
|
3.
Allen T R. Lead-cooled fast reactor systems and the fuels and materials challenges.
Sci Technol Nucl Ins,2007,2007:97486
|
CSCD被引
1
次
|
|
|
|
4.
Barbier F. Compatibility tests of steels in flowing liquid lead-bismuth.
J Nucl Mater,2001,295(2/3):149
|
CSCD被引
14
次
|
|
|
|
5.
Lambrinou K. Dissolution corrosion of 316L austenitic stainless steels in contact with static liquid lead-bismuth eutectic (LBE) at 500℃.
J Nucl Mater,2017,490:9
|
CSCD被引
13
次
|
|
|
|
6.
Johnson A L. Spectroscopic and microscopic investigation of the corrosion of 316/316L stainless steel by lead-bismuth eutectic (LBE) at elevated temperatures: importance of surface preparation.
J Nucl Mater,2004,328(2/3):88
|
CSCD被引
4
次
|
|
|
|
7.
Kurata Y. Excellent corrosion resistance of 18Cr-20Ni-5Si steel in liquid Pb-Bi.
J Nucl Mater,2004,325:217
|
CSCD被引
6
次
|
|
|
|
8.
Kondo M. Corrosion resistance of Si-and Al-rich steels in flowing lead-bismuth.
J Nucl Mater,2006,356(1/3):203
|
CSCD被引
8
次
|
|
|
|
9.
Wang Q C. Residual ferrite and relationship between composition and microstructure in highnitrogen austenitic stainless steels.
Metall Mater Trans A,2015,46(12):5537
|
CSCD被引
3
次
|
|
|
|
10.
舒玮. 热处理对奥氏体不锈钢00Cr24Ni13铸坯高温热塑性的影响.
工程科学学报,2015,37(2):190
|
CSCD被引
5
次
|
|
|
|
11.
Bai G S. Intergranular corrosion behavior associated with delta-ferrite transformation of Ti-modified Super304H austenitic stainless steel.
Corros Sci,2015,90:347
|
CSCD被引
6
次
|
|
|
|
12.
Okane T. Eutectic growth of unidirectionally solidified Fe-Cr-Ni alloy.
ISIJ Int,1998,38(5):454
|
CSCD被引
4
次
|
|
|
|
13.
Ferrandini P L. Solute segregation and microstructure of directionally solidified austenitic stainless steel.
Mater Sci Eng A,2006,435/436:139
|
CSCD被引
8
次
|
|
|
|
14.
Brooks J A. STEM analysis of primary austenite solidified stainless steel welds.
Metall Trans A,1983,14(1):23
|
CSCD被引
2
次
|
|
|
|
15.
Fu J W. Growth behavior and orientation relationships in AISI 304 stainless steel during directional solidification.
Mater Charact,2018,139:241
|
CSCD被引
2
次
|
|
|
|
16.
Song Y. A study of precipitation in as-welded 316LN plate using 316L/317L weld metal.
Mater Sci Eng A,1996,212(2):228
|
CSCD被引
2
次
|
|
|
|
17.
Padilha A F. Precipitation in AISI 316L(N) during creep tests at 550 and 600 C up to 10 years.
J Nucl Mater,2007,362(1):132
|
CSCD被引
14
次
|
|
|
|
18.
Gill T P S. Effect of composition on the transformation of δ-ferrite to σ in type 316 stainless steel weld metals.
Scripta Metall Mater,1995,32(10):1595
|
CSCD被引
4
次
|
|
|
|
19.
孙红英. 改进310奥氏体不锈钢长期时效后的组织与性能.
工程科学学报,2015,37(5):600
|
CSCD被引
3
次
|
|
|
|
20.
Mataya M C. Hot working and recrystallization of as-cast 317L.
Metall Mater Trans A,2003,34(12):3021
|
CSCD被引
4
次
|
|
|
|
|