帮助 关于我们

返回检索结果

人工智能GIS软件技术体系初探
A Tentative Study on System of Software Technology for Artificial Intelligence GIS

查看参考文献63篇

宋关福 1,2,3 *   卢浩 1,2   王晨亮 3   胡辰璞 1,2   黄科佳 1,2  
文摘 作为人工智能的代表性技术,深度学习已经成为大数据等各个领域中最具有突破性发展的新技术。深度学习的成功主要得益于其新颖的数据驱动的特征表示学习能力,这种能力成功地替代了传统建模中基于领域知识人为设计特征的方式。在这些技术推动下,人工智能技术在新一代GIS基础软件技术的研究与应用中发挥着极为重要的作用,而现有人工智能GIS(AI GIS)技术研究整体仍处于初步探索阶段,距离成熟阶段尚有较大距离。作为新一代GIS基础软件的方法和技术,AI GIS已经广泛应用在遥感数据分析、水资源研究、空间流行病学和环境健康等地学领域,与传统GIS模型相比大大提高了对非结构化的遥感或街景影像和文本的地理信息提取和特征理解能力,显示出巨大的价值和发展潜力,但现有研究对AI GIS软件技术体系的梳理和总结尚不够全面。大部分研究只关注地理空间人工智能算法的研究及其特定场景下的应用研究,而对相关的AI GIS软件技术体系关注较少。本文分析了地理智慧的几个层次,并讨论了其与AI GIS的关系,总体介绍了国内外现有人工智能技术与GIS软件相结合的发展现状,进而提出了AI GIS软件技术体系。根据AI与GIS的结合关系提出了AI GIS由地理空间智能算法、AI赋能GIS和GIS赋能AI三部分组成。此外,为深入介绍AI GIS各部分组成,本文以SuperMap为例,探讨了AI GIS软件的设计与实现。最后,探讨了AI GIS的未来发展中亟需解决的问题。本文基于AI GIS软件技术的初步探索,尝试为地理智能的基础GIS软件技术体系的构建提供理论基础,以促进人工智能技术与GIS技术的进一步融合和发展,为实现地理智能提供一个可行的研究方向。
其他语种文摘 As the representative technology of Artificial Intelligence, deep learning has been the most exciting breakthrough technologies in big data analysis and other domains researches due to its novel data-driven feature representations learning, instead of handcrafting features based on domain-specific knowledge in traditional modeling.Driven by these technological developments.Artificial Intelligence plays a key role in the researches and applications of next-generation geographical information system software technology.Nevertheless, most researches about AI GIS are still in the stage of immature and preliminary exploration.As a method and technology for the novel architecture of GIS fundamental software, AI GIS is widely used in many earth science applications including remote sensing data analysis, water resources research, spatial epidemiology and environmental health.All these technologies are significantly improving capabilities of data processing of traditional GIS, and being able to extract geospatial information and characteristics from unstructured datasets such as street view or remote sensing imagery, texts.These applications are showing great value and developing potential of AI GIS.However, the existing research on the system of software technology of AI GIS is not comprehensive enough.A variety of AI GIS algorithms or models and their scenario-specific applications are commonly considered to be the most important topic.Few researchers have addressed the issues or theory of Artificial Intelligence GIS technologies system and software architecture.This paper presents and analyzes several levels of Geo-intelligence and discuss its relationships to AI GIS technology system, reviewed the research status in AI and GIS technologies from the domestic and abroad perspectives.Then, the system of software technology of AI GIS is proposed according to the relationships between Artificial Intelligence and GIS.This paper define the architecture of AI GIS into three parts including Geospatial Artificial Intelligence(GeoAI), AI for GIS, and GIS for AI.And concepts and examples for each parts of Artificial Intelligence GIS are also analyzed for illustration.Furthermore, in order to deeply explain and investigate the AI GIS software technologies architecture, this paper provide the example of the design and implementation of SuperMap AI GIS software architectures and production.Finally, this paper discusses the problems that need to be solved in the future development of GIS.The tentative study of AI GIS in this paper may provide a theory for establishing the fundamental GIS software technology architecture of Geo-intelligence, which would helps to promote the deep integration and development of AI and GIS technology, and make suggestions for further research about Geo-intelligence.
来源 地球信息科学学报 ,2020,22(1):76-87 【核心库】
DOI 10.12082/dqxxkx.2020.190701
关键词 人工智能 ; GIS软件技术 ; 地理智慧 ; AI GIS技术体系 ; 空间深度学习 ; 空间机器学习 ; AI流程工具
地址

1. 北京超图软件股份有限公司, 北京, 100015  

2. 自然资源部地理信息系统技术创新中心, 北京, 100015  

3. 中国科学院地理科学与资源研究所, 北京, 100101

语种 中文
文献类型 研究性论文
ISSN 1560-8999
学科 测绘学;自动化技术、计算机技术
基金 国家重点研发计划项目
文献收藏号 CSCD:6676515

参考文献 共 63 共4页

1.  Karpatne A. Machine learning for the geosciences: Challenges and opportunities. IEEE Transactions on Knowledge and Data Engineering,2019,31(8):1544-1554 CSCD被引 31    
2.  Zhu X X. Deep learning in remote sensing: A comprehensive review and list of resources. IEEE Geoscience and Remote Sensing Magazine,2017,5(4):8-36 CSCD被引 104    
3.  Zhang L P. Deep learning for remote sensing data: A technical tutorial on the state of the art. IEEE Geoscience and Remote Sensing Magazine,2016,4(2):22-40 CSCD被引 115    
4.  Shen C. A transdisciplinary review of deep learning research and its relevance for water resources scientists. Water Resources Research,2018,54(11):8558-8593 CSCD被引 20    
5.  Vopham T. Emerging trends in geospatial artificial intelligence (geoAI): Potential applications for environmental epidemiology. Environmental Health,2018,17(1) CSCD被引 7    
6.  Kamel Boulos M N. An overview of GeoAI applications in health and healthcare. International Journal of Health Geographics,2019,18(1) CSCD被引 3    
7.  Helbich M. Using deep learning to examine street view green and blue spaces and their associations with geriatric depression in Beijing, China. Environment International,2019,126(1):107-117 CSCD被引 33    
8.  Cresson R. A framework for remote sensing images processing using deep learning techniques. IEEE Geoscience and Remote Sensing Letters,2019,16(1):25-29 CSCD被引 1    
9.  Yan X F. A graph convolutional neural network for classification of building patterns using spatial vector data. ISPRS Journal of Photogrammetry and Remote Sensing,2019,150(1):259-273 CSCD被引 33    
10.  Comber S. Machine learning innovations in address matching: A practical comparison of word2vec and CRFs. Transactions in GIS,2019,23(2):334-348 CSCD被引 4    
11.  Fan J. A spatiotemporal prediction framework for air pollution based on deep RNN. Remote Sensing and Spatial Information Sciences,2017,IV/4/W2(1):15-22 CSCD被引 1    
12.  Bai Y. An ensemble long short-term memory neural network for hourly PM_(2.5) concentration forecasting. Chemosphere,2019,222(1):286-294 CSCD被引 8    
13.  Goodchild M F. Towards geodesign: Repurposing cartography and GIS?. Cartographic Perspectives,2010,66:7-22 CSCD被引 4    
14.  钟耳顺. 地理控制与实况地理学-关于GIS发展的思考. 地球信息科学学报,2013,15(6):783-792 CSCD被引 6    
15.  王劲峰. 地理学时空数据分析方法. 地理学报,2014,69(9):1326-1345 CSCD被引 72    
16.  王劲峰. 空间数据分析教程(第二版),2019 CSCD被引 8    
17.  Lary D J. Machine learning in geosciences and remote sensing. Geoscience Frontiers,2016,7(1):3-10 CSCD被引 42    
18.  岳天祥. 地球表层建模研究进展. 遥感学报,2011,15(6):1111-1130 CSCD被引 1    
19.  Lecun Y. Deep learning. Nature,2015,521(7553):436-444 CSCD被引 3491    
20.  Li P. Is second-order information helpful for large-scale visual recognition?. Proceedings of the IEEE International Conference on Computer Vision,2017:2089-2097 CSCD被引 2    
引证文献 12

1 何文娜 基于ArcGIS的智能地质图综合 地球物理学进展,2020,35(2):728-734
CSCD被引 10

2 宋关福 GIS基础软件技术体系发展及展望 地球信息科学学报,2021,23(1):2-15
CSCD被引 6

显示所有12篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号