微波增强滑移电弧等离子体辅助超声速燃烧
Microwave enhanced gliding arc plasma assisted supersonic combustion
查看参考文献28篇
文摘
|
为了研究微波增强滑移电弧等离子体对超声速燃烧火焰结构的影响,在超燃冲压发动机直连式实验台发动机模型加装了微波和滑移电弧结构,进行了超声速稳定燃烧实验。以单级凹腔作为火焰稳定器,燃烧室来流马赫数为2.5,常温乙烯从壁面横向射流,燃料射流点之前放置滑移电弧电极,凹腔对侧馈入2.45GHz的微波。研究表明,在超燃冲压发动机燃烧室内滑移电弧同样遵循放电和扩展的周期特性,由于气流流速极高,滑移电弧周期约达125 kHz。等离子体的加入使燃烧室预燃激波串前移,火焰的起始和稳定位置从凹腔剪切层向燃料射流前部转移,超声速火焰燃烧速率提高。与单一的微波或滑移电弧等离子体增强燃烧方法相比,微波与滑移电弧的结合可在较低的能耗下,实现与高功率微波等效的效果。微波增强滑移电弧等离子体能够对超声速燃烧起到稳定作用。 |
其他语种文摘
|
To study the effect of microwave enhanced gliding arc plasma on supersonic combustion,an experiment is carried out on a direct-connected scramjet facility that has installed microwave and gliding arc structures.A single-stage cavity is used as flame stabilizer.The inlet Mach number of combustor is 2.5.The room temperature ethylene is injected perpendicular from the combustor wall,the gliding arc electrode is set in front of fuel jet point,and 2.45GHz microwave is fed into scramjet in the opposite side of the cavity.The results show that the gliding arc in the scramjet combustor also follows the periodic characteristics of discharge and expansion.Due to the extremely high airflow rate,the gliding arc period is approximately 125 kHz.The plasma causes the pre-combustion shock train of the combustor to move forward,and the initial and stable position of the flame is transferred from the cavity shear layer to the front of the fuel jet,and the supersonic flame rate is increased.Compared with a single microwave or the gliding arc plasma method,the combination of microwave and gliding arc can achieve high power microwave equivalent effect at a lower energy consumption.The study concludes that the microwave enhanced gliding arc plasma can stabilize the supersonic combustion. |
来源
|
航空学报
,2020,41(2):123345 【核心库】
|
DOI
|
10.7527/S1000-6893.2019.23345
|
关键词
|
超燃冲压发动机
;
超声速燃烧
;
等离子体助燃
;
滑移电弧
;
微波
|
地址
|
1.
中国科学院大学工程科学学院, 北京, 100049
2.
中国科学院力学研究所, 高温气体动力学国家重点实验室, 北京, 100190
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-6893 |
学科
|
航天(宇宙航行) |
基金
|
国家自然科学基金
|
文献收藏号
|
CSCD:6670597
|
参考文献 共
28
共2页
|
1.
Billig F S. Research on supersonic combustion.
Journal of Propulsion and Power,1993,9(4):499-514
|
CSCD被引
30
次
|
|
|
|
2.
Ju Y G. Plasma assisted combustion:Dynamics and chemistry.
Progress in Energy and Combustion Science,2015,48:21-83
|
CSCD被引
104
次
|
|
|
|
3.
Dooley S. The experimental evaluation of a methodology for surrogate fuel formulation to emulate gas phase combustion kinetic phenomena.
Combustion and Flame,2012,159(4):1444-1466
|
CSCD被引
34
次
|
|
|
|
4.
Zhu S H. Flame stabilization and propagation in dual-mode scramjet with staged-strut injectors.
AIAA Journal,2017,55(1):171-179
|
CSCD被引
4
次
|
|
|
|
5.
Zhang Y. Hysteresis of mode transition in a dual-struts based scramjet.
Acta Astronautica,2016,128:147-159
|
CSCD被引
8
次
|
|
|
|
6.
Zhu S H. Intermittent backflash phenomenon of supersonic combustion in the stagedstrut scramjet engine.
Aerospace Science and Technology,2018,79:70-74
|
CSCD被引
4
次
|
|
|
|
7.
Zhang J L. Investigation of flame establishment and stabilization mechanism in a kerosene fueled supersonic combustor equipped with a thin strut.
Aerospace Science and Technology,2017,70:152-160
|
CSCD被引
3
次
|
|
|
|
8.
Masumoto R. Experimental study on combustion modes in a supersonic combustor.
Journal of Propulsion and Power,2011,27(2):346-355
|
CSCD被引
5
次
|
|
|
|
9.
Ju Y G. Plasma assisted combustion:Progress, challenges,and opportunities.
Combustion and Flame,2015,162(3):529-532
|
CSCD被引
12
次
|
|
|
|
10.
Li F. Plasma-assisted ignition for a kerosene fueled scramjet at Mach 1.8.
Aerospace Science and Technology,2013,28(1):72-78
|
CSCD被引
6
次
|
|
|
|
11.
Cai Z. Spark-enhanced ignition and flame stabilization in an ethylene-fueled scramjet combustor with a rear-wall-expansion geometry.
Experimental Thermal and Fluid Science,2018,92:306-313
|
CSCD被引
9
次
|
|
|
|
12.
Feng R. Experimental investigation on gliding arc discharge plasma ignition and flame stabilization in scramjet combustor.
Aerospace Science and Technology,2018,79:145-153
|
CSCD被引
10
次
|
|
|
|
13.
Li X H. Cavity ignition of liquid kerosene in supersonic flow with a laser-induced plasma.
Optics Express,2016,24(22):25362
|
CSCD被引
3
次
|
|
|
|
14.
An B. Experimental investigation on the impacts of ignition energy and position on ignition processes in supersonic flows by laser induced plasma.
Acta Astronautica,2017,137:444-449
|
CSCD被引
7
次
|
|
|
|
15.
Khodataev K V. Microwave discharges and possible applications in aerospace technologies.
Journal of Propulsion and Power,2008,24(5):962-972
|
CSCD被引
5
次
|
|
|
|
16.
Baurov A Y. External combustion of high-speed multicomponent hydrocarbon-air flow under conditions of low-temperature plasma.
Moscow University Physics Bulletin,2013,68(4):293-298
|
CSCD被引
2
次
|
|
|
|
17.
Shibkov V M. The spatial-temporal evolution of combustion under conditions of low temperature discharge plasma of liquid alcohol injected into an air stream.
Moscow University Physics Bulletin,2012,67(1):138-142
|
CSCD被引
2
次
|
|
|
|
18.
Shibkov V M. Influence of surface microwave discharge on ignition of high-speed propane-air flows.
High Temperature,2011,49(2):155-167
|
CSCD被引
4
次
|
|
|
|
19.
Shibkov V M. Parameters of the flame due to surface-microwave discharge-initiated inflammation of thin alcohol films.
Technical Physics,2010,55(1):58-65
|
CSCD被引
2
次
|
|
|
|
20.
Babushok V I. Double pulse laser ablation and plasma:Laser induced breakdown spectroscopy signal enhancement.
Spectrochimica Acta Part B:Atomic Spectroscopy,2006,61(9):999-1014
|
CSCD被引
36
次
|
|
|
|
|