页岩热成熟过程中残余干酪根演化特征
Evolution characteristics of the residual kerogens in shales during thermal evolution
查看参考文献28篇
文摘
|
用低熟的页岩样品进行半开放体系压机热模拟实验,研究页岩热演化过程中残余干酪根的赋存演化特征。实验结果表明页岩中残余干酪根可分为微米级粒间有机质、微米级粒内有机质和纳米级粒间有机质。不同赋存形式有机质的热演化特征不同,微米级残余干酪根在R_(o,Easy)值为0.82%时已发生热裂解,到R_(o,Easy)值为1.45%时,微米级粒间残余干酪根被消耗殆尽,微米级粒内残余干酪根仍有一定生烃潜力;而纳米级粒间残余干酪根在R_(o,Easy)值为1.45%时才开始热裂解,在R_(o,Easy)值为2.66%时,仍有部分干酪根残留在孔隙中。伴随有机质热裂解过程,页岩中矿物组成特征也发生变化,矿物溶蚀和再沉淀作用使得页岩矿物组成整体上沿着长英质矿物含量增加、碳酸盐矿物减少、黏土矿物含量基本不变的趋势演化。干酪根热裂解生烃使得其体积缩小,在干酪根和矿物之间形成收缩有机孔,随着热演化程度的升高,收缩有机孔的孔径逐渐变大,最后转变为矿物粒间孔/粒内孔。长石和碳酸盐矿物易发生溶蚀,成熟阶段,矿物溶蚀孔开始形成,在之后的演化阶段,溶蚀孔的发育程度逐渐变强。有机质孔的发育具有非均质性,温度(成熟度)是影响其发育的重要因素。 |
其他语种文摘
|
In this work, one low-mature shale rock was selected for a series of semi-closed pyrolysis experiments, to investigate the evolution characteristics of the residual kerogens in shale rocks during thermal evolution. The results showed that the residual kerogens in shale could be divided into micron-scale intergranular, micron-scale intragranular, and nano-scale intergranular organic matter (OM). The thermal sensitivity of different residual kerogens is variable; the micron-scale OM has been pyrolyzed at R_(o,Easy) 0.82%, the micron-scale intergranular OM has been exhausted at R_(o,Easy) 1.45%, but the micron-scale intragranular OM still has hydrocarbon generation potential. Whereas, the nanoscale residual kerogens did not begin to crack until the mature stage of R_(o,Easy) 1.45% and some residual kerogens can be retained in the nanoscale rocks until the mature stage of R_(o,Easy) 2.66%. The composition of minerals in shale rocks also changed with OM cracking. The dissolution and re-precipitation of minerals resulted in a mineral composition with increasing feldspar but decreasing carbonate and clay minerals. The volume of kerogen decreased during thermal cracking, thereby forming shrinking OM pores between kerogen and minerals. The abundance and size of the shrinkage OM pores increased with the thermal maturity, and eventually became interparticle mineral pores due to the micron-scale intergranular organic matter consumption at R_(o,Easy) 1.45%. Accompanying the residual kerogen cracking, the organic pores developed heterogeneously in the shale rocks, which were mainly constrained by the maturation evolution and the development of mineral dissolution pores in the bulk shale rocks, which was also deeply associated with the thermal evolution of residual kerogens occurring in the rocks. |
来源
|
地球化学
,2019,48(6):521-532 【核心库】
|
DOI
|
10.19700/j.0379-1726.2019.06.001
|
关键词
|
页岩
;
残余干酪根
;
矿物组成
;
热演化
|
地址
|
1.
中国科学院广州地球化学研究所, 有机地球化学国家重点实验室, 广东, 广州, 510640
2.
中国科学院大学, 北京, 100049
3.
东华理工大学, 核资源与环境国家重点实验室, 江西, 南昌, 330013
4.
(武汉)中国地质大学, 湖北, 武汉, 430074
5.
页岩气评价与开采四川省重点实验室, 页岩气评价与开采四川省重点实验室, 四川, 成都, 610091
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0379-1726 |
学科
|
地质学 |
基金
|
国家自然科学基金
;
中国科学院战略性先导科技专项
|
文献收藏号
|
CSCD:6668735
|
参考文献 共
28
共2页
|
1.
邹才能.
非常规油气地质,2011:142-143
|
CSCD被引
1
次
|
|
|
|
2.
崔景伟. 页岩孔隙研究新进展.
地球科学进展,2012,27(12):1319-1325
|
CSCD被引
86
次
|
|
|
|
3.
Chalmers G R. Characterization of gas shale pore systems by porosimetry, pycnometry, surface area, and field emission scanning electron microscopy/transmission electron microscopy image analyses: Examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig units.
AAPG Bulletin,2012,96(6):1099-1119
|
CSCD被引
305
次
|
|
|
|
4.
Bernard S. FIB-SEM and TEM investigations of an organic-rich shale maturation series from the lower Toarcian Posidonia Shale, Germany: Nanoscale pore system and fluid-rock interactions.
AAPG Memoir,2013,102:53-66
|
CSCD被引
3
次
|
|
|
|
5.
Bai B. Multi-scale method of Nano(Micro)-CT study on microscopic pore structure of tight sandstone of Yanchang Formation, Ordos Basin.
Pet Explor Develop,2013,40(3):354-358
|
CSCD被引
19
次
|
|
|
|
6.
Guo X J. Quantitative pore characterization and the relationship between pore distributions and organic matter in shale based on Nano-CT image analysis: A case study for a lacustrine shale reservoir in the Triassic Chang 7 member, Ordos Basin, China.
J Nat Gas Sci Eng,2015,27:1630-1640
|
CSCD被引
12
次
|
|
|
|
7.
苗雅楠. 页岩有机质热演化生烃成孔及其甲烷吸附机理研究进展.
中国科学:物理学力学天文学,2017,47(11):41-51
|
CSCD被引
2
次
|
|
|
|
8.
Merriman R J.
Patterns of Very Low-Grade Metamorphism in Metapelitic Rocks,1999
|
CSCD被引
1
次
|
|
|
|
9.
曹正林. 高温高压碎屑岩储层中石膏溶解对方解石沉淀的影响.
石油学报,2014,35(3):450-454
|
CSCD被引
15
次
|
|
|
|
10.
黄可可. 长石溶解过程的热力学计算及其在碎屑岩储层研究中的意义.
地质通报,2009,28(4):474-482
|
CSCD被引
53
次
|
|
|
|
11.
黄思静. 石膏对白云岩溶解影响的实验模拟研究.
沉积学报,1996,1(1):103-109
|
CSCD被引
52
次
|
|
|
|
12.
杨桂芳. 松辽盆地白垩系砂岩长石碎屑的钠长石化作用.
地质论评,2003,49(2):155-161,228
|
CSCD被引
23
次
|
|
|
|
13.
张天付. 碳酸盐岩埋藏溶蚀的热力学分析及其地质意义.
新疆石油地质,2012,33(2):179-181
|
CSCD被引
4
次
|
|
|
|
14.
徐旭辉. 泥页岩中有机质的赋存形态与油气形成.
石油实验地质,2016,38(4):423-428
|
CSCD被引
11
次
|
|
|
|
15.
马中良. 富有机质页岩有机孔隙形成与演化的热模拟实验.
石油学报,2017,38(1):23-30
|
CSCD被引
55
次
|
|
|
|
16.
杜军艳. 三塘湖盆地二叠系干酪根热模拟气体产物的地球化学特征.
地球化学,2014,43(5):510-517
|
CSCD被引
3
次
|
|
|
|
17.
王治朝. 生烃模拟实验方法现状与存在问题.
天然气地球科学,2009,20(4):592-597
|
CSCD被引
23
次
|
|
|
|
18.
Sweeney J J. Evaluation of a simple model of vitrinite reflectance based on chemical kinetics.
AAPG Bulletin,1990,74(10):1559-1570
|
CSCD被引
338
次
|
|
|
|
19.
傅家谟.
煤成烃地球化学,1990:40-50
|
CSCD被引
1
次
|
|
|
|
20.
黄思静. 成岩过程中长石、高岭石、伊利石之间的物质交换与次生孔隙的形成:来自鄂尔多斯盆地上古生界和川西凹陷三叠系须家河组的研究.
地球化学,2009,38(5):498-506
|
CSCD被引
169
次
|
|
|
|
|