结合双树复小波变换和改进密度峰值快速搜索聚类的乳腺MR图像分割
Dual-Tree Complex Wavelet Transform and Improved Density Peak Fast Search and Clustering Method for Breast MR Image Segmentation
查看参考文献23篇
文摘
|
针对乳腺MR图像组织复杂、灰度不均匀、难分割的特点,本文提出双树复小波( DTCWT)变换结合密度聚类的图像分割方法.首先利用复小波域双变量模型结合各向异性扩散函数对图像进行去噪处理;进而通过简单线性迭代聚类( SLIC)算法将图像划分成一定数量的超像素区域,根据事先设置的阈值搜索每个超像素的近邻,从而降低基于K近邻的密度峰值快速搜索聚类( KNN-DPC)算法寻找每个样本近邻的时间;最终,引入超像素区域的近邻信息度量样本密度,采用KNN-DPC算法的分配策略自适应聚类.仿真和临床数据分割结果表明,所提算法能有效的实现乳腺MR图像的分割. |
其他语种文摘
|
Breast MR image segmentation is difficult because of complex organization and intensity inhomogeneity. This paper proposes a segmentation method based on dual-tree complex wavelet transform and density clustering. Firstly, the image is denoised by using complex wavelet domain bivariate model combined with anisotropic diffusion function; Then simple linear iterative clustering ( SLIC) algorithm is used to obtain the neighbors of each superpixel, thereby reducing the time of searching for the nearest neighbor of each sample in KNN-DPC algorithm. Finally,nearest neighbor sample density information of superpixel region is introduced, and distribution strategies from KNN-DPC algorithm are used for adaptive clustering. The segmentation results of simulation and clinical data show that the proposed algorithm can segment breast MR images effectively. |
来源
|
电子学报
,2019,47(10):2149-2157 【核心库】
|
DOI
|
10.3969/j.issn.0372-2112.2019.10.017
|
关键词
|
乳腺MR图像分割
;
双树复小波变换
;
双变量模型
;
超像素分类
;
密度峰值快速搜索聚类
|
地址
|
1.
陕西师范大学计算机科学学院, 陕西, 西安, 710062
2.
中国科学院深圳先进技术研究院生物医学与健康工程研究所, 广东, 深圳, 518055
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0372-2112 |
学科
|
自动化技术、计算机技术 |
基金
|
国家自然科学基金
;
陕西省重点研发展计划
;
陕西省自然科学基金
|
文献收藏号
|
CSCD:6668668
|
参考文献 共
23
共2页
|
1.
Fan L. Breast cancer in China.
The Lancet Oncology,2014,15(7):e279-e289
|
CSCD被引
319
次
|
|
|
|
2.
包尚联. 核磁共振骨皮质成像关键技术研究进展.
物理学报,2013,62(8):088701
|
CSCD被引
8
次
|
|
|
|
3.
Oktay O. Anatomically constrained neural networks ( ACNNs): Application to cardiac image enhancement and segmentation.
IEEE Transactions on Medical Imaging,2018,37(2):384
|
CSCD被引
12
次
|
|
|
|
4.
Qian S. Medical image segmentation based on FCM and level set algorithm.
The 7th IEEE International Conference on Software Engineering and Service Science (ICSESS),2016:225-228
|
CSCD被引
1
次
|
|
|
|
5.
陈志彬. 一种基于FCM和LevelSet的MRI医学图像分割方法.
电子学报,2008,36(9):1733-1737
|
CSCD被引
15
次
|
|
|
|
6.
王顺凤. 局部熵驱动的GAC模型在生物医学图像分割中的应用.
电子学报,2013,41(12):2487-2492
|
CSCD被引
6
次
|
|
|
|
7.
范虹. 多分辨率水平集算法的乳腺MR图像分割.
物理学报,2014,63(11):118701
|
CSCD被引
2
次
|
|
|
|
8.
葛婷. 基于softmax回归与图割法的脑肿瘤分割算法.
电子学报,2017,45(3):644-649
|
CSCD被引
7
次
|
|
|
|
9.
Vesal S.
Comparative Analysis of Unsupervised Algorithms for Breast MRI Lesion Segmentation,2018:257-262
|
CSCD被引
1
次
|
|
|
|
10.
Kang D. An improved method of breast MRI segmentation with Simplified Kmeans clustered images.
Proceedings of the 2011 ACM Symposium on Research in Applied Computation,2011:226-231
|
CSCD被引
1
次
|
|
|
|
11.
Moftah H M. Adaptive k-means clustering algorithm for MR breast image segmentation.
Neural Computing & Applications,2014,24(7/8):1917-1928
|
CSCD被引
6
次
|
|
|
|
12.
Rodriguez A. Clustering by fast search and find of density peaks.
Science,2014,344(6191):1492
|
CSCD被引
802
次
|
|
|
|
13.
谢娟英. K近邻优化的密度峰值快速搜索聚类算法.
中国科学:信息科学,2016,46(2):258-280
|
CSCD被引
59
次
|
|
|
|
14.
刘金华. 基于双树复小波与波原子的图像扩散滤波.
物理学报,2011,60(12):124203
|
CSCD被引
3
次
|
|
|
|
15.
Selesnick I W. The dual-tree complex wavelet transform.
IEEE Signal Processing Magazine,2005,22(6):123-151
|
CSCD被引
214
次
|
|
|
|
16.
Sendur L. Bivariate shrinkage functions for wavelet-based denoising exploiting interscale dependency.
IEEE Transactions on Signal Processing,2002,50(11):2744-2756
|
CSCD被引
123
次
|
|
|
|
17.
Chang S G. Adaptive wavelet thresholding for image denoising and compression.
IEEE Transactions on Image Processing A Publication of the IEEE Signal Processing Society,2002,9(9):1532-1546
|
CSCD被引
5
次
|
|
|
|
18.
Li M. An algorithm for remote sensing image denoising based on the combination of the improved bishrink and DTCWT.
Procedia Engineering,2011,24(6):470-474
|
CSCD被引
1
次
|
|
|
|
19.
Donoho D. Adapting to unknown smoothness via wavelet shrinkage.
Publications of the American Statistical Association,1995,90(432):1200-1224
|
CSCD被引
405
次
|
|
|
|
20.
Dice L R. Measures of the amount of ecologic association between species.
Ecology,1944,26(3):297-302
|
CSCD被引
184
次
|
|
|
|
|