基于高阶残差和参数共享反馈卷积神经网络的农作物病害识别
High-Order Residual and Parameter-Sharing Feedback Convolutional Neural Network for Crop Disease Recognition
查看参考文献24篇
文摘
|
当前,大部分农作物病害图像识别方法主要关注于精度而忽略了鲁棒性.在面向实际环境时,由于噪声干扰和环境因素影响导致识别精度不高.为此提出了一种高阶残差和参数共享反馈的卷积神经网络模型以应用于实际环境农作物病害识别.其中,高阶残差子网络为病害表观提供丰富细致的特征表达,以提高模型识别精度;参数共享反馈子网络用来进一步抑制原深层特征中的背景噪声,以提高模型的鲁棒性.实验结果表明,当面向实际环境农作物病害识别时,本文方法在识别精度和鲁棒性上均优于其他方法. |
其他语种文摘
|
Most of current crop-disease recognition approaches mainly focus on improving the recognition accuracy on public datasets,while ignoring the recognition robustness. When dealing with real-world recognition problem, the actual recognition accuracy of those approach are often unsatisfactory because of noise interference and environmental influence. To address these issues,we propose a high-order residual and parameter-sharing feedback convolutional neural network ( HORPSF) for crop-disease recognition. The high-order residual subnetwork is helpful for improving the recognition accuracy of crop disease. The parameter-sharing feedback subnetwork can effectively depress the background noises and enhance the robustness of the model. Extensive experiment results demonstrate that the proposed HORPSF approach significantly outperforms other competing methods in terms of recognition accuracy and robustness,especially demonstrating superior performance when dealing with the real-world examples of crop-disease recognition. |
来源
|
电子学报
,2019,47(9):1979-1986 【核心库】
|
DOI
|
10.3969/j.issn.0372-2112.2019.09.023
|
关键词
|
高阶残差
;
参数共享反馈
;
鲁棒性
;
农作物病害识别
|
地址
|
1.
中国科学院合肥智能机械研究所, 安徽, 合肥, 230031
2.
中国科学技术大学, 安徽, 合肥, 230027
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0372-2112 |
学科
|
自动化技术、计算机技术 |
基金
|
国家重点研发计划资助
|
文献收藏号
|
CSCD:6668646
|
参考文献 共
24
共2页
|
1.
Hughes D P. An open access repository of images on plant health to enable the development of mobile disease diagnostics.
arXiv: Computers and Society,2015
|
CSCD被引
3
次
|
|
|
|
2.
Omrani E. Potential of radial basis function-based support vector regression for apple disease detection.
Measurement,2014,55(1):512-519
|
CSCD被引
7
次
|
|
|
|
3.
王志彬. 基于动态集成的黄瓜叶部病害识别方法.
农业机械学报,2017,48(9):46-52
|
CSCD被引
5
次
|
|
|
|
4.
马浚诚. 基于图像处理的温室黄瓜霜霉病诊断系统.
农业机械学报,2017,48(2):195-202
|
CSCD被引
18
次
|
|
|
|
5.
詹曙. 基于Gabor特征和字典学习的高斯混合稀疏表示图像识别.
电子学报,2015,43(3):523-528
|
CSCD被引
15
次
|
|
|
|
6.
Mohanty S P. Using deep learning for image-based plant disease detection.
Frontiers in Plant Science,2016,7(1):1-7
|
CSCD被引
91
次
|
|
|
|
7.
Szegedy C. Going deeper with convolutions.
IEEE Conference on Computer Vision and Pattern Recognition,2015:1-9
|
CSCD被引
138
次
|
|
|
|
8.
Krizhevsky A. ImageNet classification with deep convolutional neural networks.
NIPS'12 Proceedings of the 25th International Conference on Neural Information Processing Systems,2012:1097-1105
|
CSCD被引
11
次
|
|
|
|
9.
Nachtigall L G. Classification of apple tree disorders using convolutional neural networks.
28th IEEE International Conference on Tools with Artificial Intelligence,2016:472-476
|
CSCD被引
1
次
|
|
|
|
10.
Fuentes A. A robust deep-learning-based detector for real-time tomato plant diseases and pests recognition.
Sensors,2017,17(9):1-21
|
CSCD被引
33
次
|
|
|
|
11.
Ren S. Faster R-CNN: towards real-time object detection with region proposal networks.
Neural Information Processing Systems,2015:91-99
|
CSCD被引
12
次
|
|
|
|
12.
Dai J. R-FCN: object detection via region-based fully convolutional networks.
NIPS'16 Proceedings of the 29th International Conference on Neural Information Processing Systems,2016:379-387
|
CSCD被引
1
次
|
|
|
|
13.
Liu W. SSD: single shot multibox detector.
European Conference on Computer Vision,2016:21-37
|
CSCD被引
941
次
|
|
|
|
14.
Simonyan K. Very deep convolutional networks for large-scale image recognition.
International Conference on Learning Representations,2015:1-14
|
CSCD被引
71
次
|
|
|
|
15.
He K. Deep residual learning for image recognition.
IEEE Conference on Computer Vision and Pattern Recognition,2016:770-778
|
CSCD被引
236
次
|
|
|
|
16.
孙俊. 基于改进卷积神经网络的多种植物叶片病害识别.
农业工程学报,2017,33(19):209-215
|
CSCD被引
93
次
|
|
|
|
17.
张航. 一种基于卷积神经网络的小麦病害识别方法.
山东农业科学,2018,50(3):137-141
|
CSCD被引
5
次
|
|
|
|
18.
柯圣财. 基于卷积神经网络和监督核哈希的图像检索方法.
电子学报,2017,45(1):157-163
|
CSCD被引
15
次
|
|
|
|
19.
Lee S H. How deep learning extracts and learns leaf features for plant classification.
Pattern Recognition,2017,71(1):1-13
|
CSCD被引
23
次
|
|
|
|
20.
Kumar N. Leafsnap: a computer vision system for automatic plant species identification.
European Conference on Computer Vision,2012:502-516
|
CSCD被引
8
次
|
|
|
|
|