帮助 关于我们

返回检索结果

多分类CNN的胶质母细胞瘤多模态MR图像分割
Glioblastoma Multiforme Multi-modal MR Images Segmentation Using Multi-class CNN

查看参考文献23篇

赖小波 1   许茂盛 2   徐小媚 1  
文摘 为提高胶质母细胞瘤( GBM)多模态磁共振( MR)图像中各肿瘤子区域分割的准确性,提出一种多分类卷积神经网络( CNN)的GBM多模态MR图像自动分割算法.首先在98%缩尾处理和配准GBM多模态MR图像后,利用N4ITK法校正偏移场;其次构建一个主要由4个卷积层、2个池化层和2个全连接层组成的多分类CNN模型,训练后预分割GBM多模态MR图像,将体素分为5类不同的标签;最后移除所有小于200体素的假阳性区域,中值滤波后获得最终分割结果.以Dice相似性系数DSC、阳性预测值PPV和平均Hausdorff距离AHD为评价指标,利用所提出的算法对F-C-GBM数据集中整个肿瘤组织进行分割,获得的DSC、PPV、AHD分别为0.889 ± 0.087、0.859 ± 0.127和1.923.结果表明,该算法能有效提高GBM多模态MR图像分割的性能,可望有临床应用前景.
其他语种文摘 To improve the accuracy of segmenting the tumor sub-regions in glioblastoma multiforme ( GBM) multimodal magnetic resonance ( MR) images,a GBM multi-modal MR images automatic segmentation algorithm is proposed by using multi-class convolution neural network ( CNN). Firstly, after 98% winsorization and registration for the GBM multimodal MR images, the bias field was corrected by using the N4ITK method. Secondly,a multi-class CNN model mainly consisting of four convolutional layers, two pooling layers and two fully connected layers was constructed; the GBM multi-modal MR images were pre-segmented after training, and voxels were classified into five different labels. Finally, all false positive regions smaller than 200 voxels were removed,and the final segmentation results were obtained by median filtering. The Dice similarity coefficient DSC,positive predictive value PPV and average Hausdorff distance AHD were adopted as the evaluation index, and the DSC,PPV as well as AHD were 0.889 ± 0.087, 0.859 ± 0.127 and 1.923 for segmenting the entire tumor tissues in F-C-GBM dataset by the proposed algorithm, respectively. Results indicate that the proposed method can effectively improve the performance in the segmentation of the GBM multi-modal MR images and may be expected to have clinical application prospects.
来源 电子学报 ,2019,47(8):1738-1747 【核心库】
DOI 10.3969/j.issn.0372-2112.2019.08.018
关键词 胶质母细胞瘤 ; 多模态磁共振图像 ; 自动分割 ; 多分类卷积神经网络 ; 图像块
地址

1. 浙江中医药大学医学技术学院, 浙江, 杭州, 310053  

2. 浙江中医药大学第一临床医学院, 浙江, 杭州, 310053

语种 中文
文献类型 研究性论文
ISSN 0372-2112
学科 自动化技术、计算机技术
基金 国家自然科学基金 ;  浙江省自然科学基金
文献收藏号 CSCD:6668615

参考文献 共 23 共2页

1.  刘瑞. 基于多模态MRI图像的脑肿瘤分割方法,2017 CSCD被引 1    
2.  Akkus Z. Deep learning for brain MRI segmentation: state of the art and future directions. Journal of Digital Imaging,2017,30(4):449-459 CSCD被引 9    
3.  Stijn B. Machine learning based brain tumour segmentation on limited data using local texture and abnormality. Computers in Biology and Medicine,2018,98(1):39-47 CSCD被引 2    
4.  Kaur T. A novel fully automatic multilevel thresholding technique based on optimized intuitionistic fuzzy sets and tsallis entropy for MR brain tumor image segmentation. Australasian Physical & Engineering Sciences in Medicine,2018,41(1):41-58 CSCD被引 2    
5.  Vishnuvarthanan G. Tumor detection in T1,T2, FLAIR and MPR brain images using a combination of optimization and fuzzy clustering improved by seed-based region growing algorithm. International Journal of Imaging Systems and Technology,2017,27(1):33-45 CSCD被引 2    
6.  Kavitha A R. Brain tumour segmentation from MRI image using genetic algorithm with fuzzy initialisation and seeded modified region growing ( GFSMRG) method. Imaging Science Journal,2016,64(5):285-297 CSCD被引 1    
7.  Sasikanth S. Glioma tumor detection in brain MRI image using ANFIS-based normalized graph cut approach. International Journal of Imaging Systems and Technology,2018,28(1):64-71 CSCD被引 1    
8.  Varuna S N. Identification and classification of brain tumor MRI images with feature extraction using DWT and probabilistic neural network. Brain Informatics,2018,5(1):23-30 CSCD被引 4    
9.  Essadike A. Brain tumor segmentation with Vander Lugt correlator based active contour. Computer Methods and Programs in Biomedicine,2018,160(9):103-117 CSCD被引 1    
10.  Lok K H. Fast and robust brain tumor segmentation using level set method with multiple image information. Journal of X-Ray Science and Technology,2017,25(2):301-312 CSCD被引 1    
11.  Karuppathal R. An automotive approach for brain tumor segmentation based on Gaussian distribution and level set method. Current Medical Imaging Reviews,2014,10(4):290-296 CSCD被引 1    
12.  Pope W B. MR imaging correlates of survival in patients with high-grade gliomas. American Journal of Neuroradiology,2005,26(10):2466-2474 CSCD被引 13    
13.  柯圣财. 基于卷积神经网络和监督核哈希的图像检索方法. 电子学报,2017,45(1):158-163 CSCD被引 1    
14.  Jayasuriya S A. Symmetry plane detection in brain image analysis: a survey. Current Medical Imaging Reviews,2013,9(3):230-247 CSCD被引 1    
15.  Tustison N J. N4ITK: improved N3 bias correction. IEEE Transactions on Medical Imaging,2010,29(6):1310-1320 CSCD被引 42    
16.  Pereira S. Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Transactions on Medical Imaging,2016,30(5):1240-1251 CSCD被引 66    
17.  Havaei M. Brain tumor segmentation with deep neural networks. Medical Image Analysis,2017,35:18-31 CSCD被引 80    
18.  Zikic D. Decision forests for tissue-specific segmentation of high-grade gliomas in multi-channel MR. International Conference on Medical Image Computing and Computer-Assisted Intervention,2012:369-376 CSCD被引 1    
19.  Meier R. Appearanceand context-sensitive features for brain tumor segmentation. International Conference on Medical Image Computing and Computer-Assisted Intervention,2015:48-51 CSCD被引 1    
20.  Reza S. Multi-fractal texture features for brain tumor and edema segmentation. International Society for Optics and Photonics,2014:903503-903503 CSCD被引 1    
引证文献 7

1 陈浩 基于同一特征空间的多模态脑肿瘤分割方法 计算机应用,2020,40(7):2104-2109
CSCD被引 1

2 陈雪云 基于多尺度条件生成对抗网络血细胞图像分类检测方法 浙江大学学报. 工学版,2021,55(9):1772-1781
CSCD被引 2

显示所有7篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号