Effect of reaction routes on the porosity and permeability of porous high entropy (Y_(0.2)Yb_(0.2)Sm_(0.2)Nd_(0.2)Eu_(0.2))B_6 for transpiration cooling
查看参考文献45篇
文摘
|
Transpiration cooling technique is a reusable and high-efficiency thermal protection system (TPS), which is potential to improve the reusability and security of re-entry space vehicle. Relatively low density, high permeability and high porosity are general requirements for porous media of transpiration cooling systems. In this work, a new porous high entropy metal hexaboride (Y_(0.2)Yb_(0.2)Sm_(0.2)Nd_(0.2)Eu_(0.2))B_6 is designed and prepared by the in-situ reaction/partial sintering method.Tworeaction routes are designed to synthesize (Y_(0.2)Yb_(0.2)Sm_(0.2)Nd_(0.2)Eu_(0.2))B_6, including boron thermal reduction and borocarbon thermal reduction. The as-prepared porous HE (Y_(0.2)Yb_(0.2)Sm_(0.2)Nd_(0.2)Eu_(0.2))B_6 ceramics possess homogeneous microstructure and exhibit low density, high porosity, high compressive strength and high permeability. The combination of these properties makes porous HE (Y_(0.2)Yb_(0.2)Sm_(0.2)Nd_(0.2)Eu_(0.2))B_6 promising as a candidate porous media for various transpiration cooling applications. |
来源
|
Journal of Materials Science & Technology
,2020,38:80-85 【核心库】
|
DOI
|
10.1016/j.jmst.2019.09.006
|
关键词
|
High entropy ceramics
;
(Y_(0.2)Yb_(0.2)Sm_(0.2)Nd_(0.2)Eu_(0.2))B_6
;
Transpiration cooling
;
Porous UHTCs
;
In-situ reaction synthesis
|
地址
|
1.
School of Materials Science and Engineering, Tianjin University, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin, 300072
2.
Aerospace Research Institute of Materials & Processing Technology, Science and Technology on Advanced Functional Composite Laboratory, Beijing, 100076
3.
Institute of Metal Research, Chinese Academy of Sciences, Shenyang National Laboratory for Materials Science, Shenyang, 110016
|
语种
|
英文 |
文献类型
|
研究性论文 |
ISSN
|
1005-0302 |
学科
|
航天(宇宙航行) |
基金
|
国家自然科学基金
|
文献收藏号
|
CSCD:6664511
|
参考文献 共
45
共3页
|
1.
Esser B.
J. Spacecraft. Rockets,2016,53:1051-1060
|
CSCD被引
6
次
|
|
|
|
2.
Anderson Jr J D.
Hypersonic and High-Temperature Gas Dynamics,2006
|
CSCD被引
3
次
|
|
|
|
3.
Varvill R.
J. Br. Interplanet. Soc,2008,61:412-418
|
CSCD被引
1
次
|
|
|
|
4.
Gulhan A.
Exp. Fluids,2011,50:509-525
|
CSCD被引
5
次
|
|
|
|
5.
Kays W M.
Int. J. Heat Mass Transf,1972,15:1023-1044
|
CSCD被引
2
次
|
|
|
|
6.
Langener T.
Int. J. Therm. Sci,2012,54:70-81
|
CSCD被引
14
次
|
|
|
|
7.
Konig V.
J. Thermophys. Heat. Transf,2018,33:449-461
|
CSCD被引
1
次
|
|
|
|
8.
Kuhn M.
5th European Workshop on Thermal Protection Systems and Hot Structure, ESA/ESTEC,2006:631
|
CSCD被引
1
次
|
|
|
|
9.
Ifti H S.
22nd AIAA International Space Planes and Hypersonics Systems and Technologies Conference,2018:5167
|
CSCD被引
1
次
|
|
|
|
10.
Fahrenholtz W G.
Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications,2014:1-5
|
CSCD被引
4
次
|
|
|
|
11.
Zhou Y C.
J. Am. Ceram. Soc,2016,99:2110-2119
|
CSCD被引
9
次
|
|
|
|
12.
Xiang H.
J. Eur. Ceram. Soc,2019,39:2982-2988
|
CSCD被引
3
次
|
|
|
|
13.
Wang X F.
J. Am. Ceram. Soc,2015,98:2234-2239
|
CSCD被引
6
次
|
|
|
|
14.
Chen H. Low thermal conductivity and high porosity ZrC and HfC ceramics prepared by in-situ reduction reaction/partial sintering method for ultrahigh temperature applications.
J. Mater. Sci. Technol,2019,35:2778-2784
|
CSCD被引
14
次
|
|
|
|
15.
Guo Q Q.
J. Eur. Ceram. Soc,2015,35:3411-3418
|
CSCD被引
10
次
|
|
|
|
16.
Zhou Y C.
J. Mater. Sci. Technol,2015,31:285-294
|
CSCD被引
18
次
|
|
|
|
17.
Yuan H P.
Int. J. Refract. Metals Hard Mater,2013,36:225-231
|
CSCD被引
6
次
|
|
|
|
18.
Zhou Y.
J. Mater. Sci. Technol,2017,33:1371-1377
|
CSCD被引
2
次
|
|
|
|
19.
Zhou Y.
Mater. Res. Lett,2015,3:210-215
|
CSCD被引
1
次
|
|
|
|
20.
Zhou Y.
J. Eur. Ceram. Soc,2016,36:3571-3579
|
CSCD被引
1
次
|
|
|
|
|