Microbiologically influenced corrosion of 304L stainless steel caused by an alga associated bacterium Halomonas titanicae
查看参考文献29篇
文摘
|
Algae are reported to be corrosive, while little is known about the role of the algae associated bacteria in the corrosion process. In the present study, Halomonas titanicae was isolated from a culture of an alga strain, Spirulina platensis, and identified through 16S rRNA gene analysis. Corrosion behavior of 304L stainless steel (SS) coupons in the presence and absence of H. titanicae was characterized by using electrochemical measurements and surface analysis. The results showed that H. titanicae significantly accelerated the corrosion rate and decreased the pitting potential of 304L SS in the biotic medium. After removal of the corrosion products and biofilms, severe pitting corrosion caused by H. titanicae was observed. The largest pit depth after 14 d reached 6.6µm, which was 5.5 times higher than that of the sterile control (1.2µm). This is the first report revealing that an alga associated bacterium can induce microbiologically influenced corrosion (MIC), and a further concern is raised that whether algae play a role in the MIC process. |
来源
|
Journal of Materials Science & Technology
,2020,37:200-206 【核心库】
|
DOI
|
10.1016/j.jmst.2019.06.023
|
关键词
|
Microbiologically influenced corrosion
;
Halomonas titanicae
;
Pitting corrosion
|
地址
|
1.
Northeastern University, Shenyang National Laboratory for Materials Science, Shenyang, 110819
2.
Center for Marine Materials Corrosion and Protection,College of Materials,Xiamen University, Xiamen, 361005
3.
Laboratory of Microbial Biotechnology,Faculty of Science and Technology,Sidi Mohamed Ben Abdellah University, Morocco, Fez, 2202
|
语种
|
英文 |
文献类型
|
研究性论文 |
ISSN
|
1005-0302 |
学科
|
金属学与金属工艺 |
基金
|
supported financially by the National Natural Science Foundation of China
;
the National Environmental Corrosion Platform(NECP) of China
;
the Fundamental Research Funds for the Central Universities of Ministry of Education of China
|
文献收藏号
|
CSCD:6664501
|
参考文献 共
29
共2页
|
1.
Allwright H.
J. Basic Appl. Sci. Res,2016,6:28-37
|
CSCD被引
1
次
|
|
|
|
2.
Liu H.
Int. Biodeterior. Biodegrad,2018,129:209-216
|
CSCD被引
4
次
|
|
|
|
3.
Ramanan R.
Biotechnol. Adv,2016,34:14-29
|
CSCD被引
57
次
|
|
|
|
4.
Gu T. Toward a better understanding of microbiologically influenced corrosion caused by sulfate reducing bacteria.
J. Mater. Sci. Technol,2019,35:631-636
|
CSCD被引
53
次
|
|
|
|
5.
Javaherdashti R.
Microbiologically Influenced Corrosion: An Engineering Insight, 2nd ed,2017
|
CSCD被引
1
次
|
|
|
|
6.
Mieszkin S.
Biofouling,2013,29:1097-1113
|
CSCD被引
11
次
|
|
|
|
7.
Callow M E.
Biologist,2002,49:1-5
|
CSCD被引
14
次
|
|
|
|
8.
Beech I B.
Curr. Opin. Biotechnol,2004,15:181-186
|
CSCD被引
59
次
|
|
|
|
9.
Maxwell S.
Paper No.04752, Corrosion 2004,2004
|
CSCD被引
1
次
|
|
|
|
10.
Sanchez-Porro C.
Int. J. Syst. Evol. Microbiol,2010,60:2768-2774
|
CSCD被引
3
次
|
|
|
|
11.
Zhang P.
Bioelectrochemistry,2015,101:14-21
|
CSCD被引
60
次
|
|
|
|
12.
Lananan F.
Bioresour. Technol,2013,141:75-82
|
CSCD被引
6
次
|
|
|
|
13.
Marchesi J R.
Appl. Environ. Microbiol,1998,64:795-799
|
CSCD被引
88
次
|
|
|
|
14.
Lekbach Y.
Int. Biodeterior. Biodegrad,2018,133:159-169
|
CSCD被引
5
次
|
|
|
|
15.
Dong Y.
Bioelectrochemistry,2018,123:34-44
|
CSCD被引
13
次
|
|
|
|
16.
Lekbach Y.
Bioelectrochemistry,2019,128:193-203
|
CSCD被引
4
次
|
|
|
|
17.
Jia R.
Bioelectrochemistry,2017,118:38-46
|
CSCD被引
31
次
|
|
|
|
18.
Yuan S J.
Corros. Sci,2007,49:4352-4385
|
CSCD被引
22
次
|
|
|
|
19.
Ashassi-Sorkhabi H.
Electrochim. Acta,2002,47:2239-2244
|
CSCD被引
1
次
|
|
|
|
20.
Zhao A.
J. Energy Chem,2014,23:701-707
|
CSCD被引
3
次
|
|
|
|
|