Ti65合金的初级蠕变和稳态蠕变
Primary Creep and Steady-State Creep of Ti65 Alloy
查看参考文献60篇
文摘
|
使用透射电镜(TEM)研究了Ti65合金在600~650℃、120~160 MPa条件下的蠕变变形行为及其微观变形机制。结果表明:初级蠕变变形机制主要由受攀移控制的位错越过α_2相的过程主导;稳态蠕变阶段蠕变机制主要由受界面处扩散控制的位错攀移的过程主导,且应力指数为5~7。在初级蠕变阶段α_2相与位错的相互作用是α_2相对合金高温强化的主要方式,在稳态蠕变阶段沿α/β相界分布的硅化物阻碍位错运动与限制晶界滑移是硅化物对合金强化的主要方式。 |
其他语种文摘
|
The creep deformation behavior and relevant microscopic deformation mechanisms of Ti65 alloy were investigated via tensile creep test by stresses in the range of 120~160 MPa at 600~650°C and TEM observation. The results show that the primary creep deformation mechanism is dominated by the process of climbing-controlled dislocations crossing the α_2 phases and the creep mechanism in the steady-state creep stage is dominated by the process of diffusion-controlled dislocation climbing at the α/β interfaces, and the stress index of steady-state creep stage varies from 5 to 7. The hindering of dislocation motions by α_2 phases is the dominating process to strengthen the high-temperature creep resistance of Ti65 alloy during the primary creep stage. The silicide precipitates distributed along α/β phase boundaries,impede the dislocation motions and restrict the grain boundary slip (GBS), which is the dominating strengthening mechanism during the steady-state creep stage. |
来源
|
材料研究学报
,2020,34(2):151-160 【核心库】
|
DOI
|
10.11901/1005.3093.2019.286
|
关键词
|
材料科学基础学科
;
蠕变机制
;
蠕变试验
;
Ti65合金
|
地址
|
1.
中国科学院金属研究所, 沈阳, 110016
2.
中国科学技术大学材料科学与工程学院, 沈阳, 110016
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1005-3093 |
学科
|
金属学与金属工艺 |
文献收藏号
|
CSCD:6661977
|
参考文献 共
60
共3页
|
1.
Es-Souni M. Creep behaviour and creep microstructures of a hightemperature titanium alloy Ti-5.8 Al-4.0 Sn-3.5 Zr-0.7 Nb-0.35 Si-0.06 C (Timetal 834): part I. Primary and steady-state creep.
Mater. Charact,2001,46(5):365
|
CSCD被引
6
次
|
|
|
|
2.
Hayes R. Creep behavior of Ti-6Al-2Sn-4Zr-2Mo: I. The effect of nickel on creep deformation and microstructure.
Acta Mater,2002,50(20):4953
|
CSCD被引
8
次
|
|
|
|
3.
Viswanathan G. Creep behaviour of Ti-6Al-2Sn-4Zr-2Mo: II. Mechanisms of deformation.
Acta Mater,2002,50(20):4965
|
CSCD被引
11
次
|
|
|
|
4.
Rosenberger A H. Aging effects on the creep behavior of the near-alpha titanium alloy Ti-1100.
J Mater. Eng. Perform,1995,4(2):182
|
CSCD被引
8
次
|
|
|
|
5.
Chandravanshi V. Effects of thermomechanical processing and heat treatment on the tensile and creep properties of boron-modified near alpha titanium Alloy Ti-1100.
Metall. Mater. Trans. A,2012,44(1):201
|
CSCD被引
6
次
|
|
|
|
6.
赵亮. 析出相对Ti60钛合金蠕变和持久性能的影响.
材料研究学报,2009,23(1):1
|
CSCD被引
18
次
|
|
|
|
7.
Li W Y. Effect of texture on anisotropy at 600℃in a near-α titanium alloy Ti60 plate.
Mater. Sci. Eng. A,2017,688:322
|
CSCD被引
20
次
|
|
|
|
8.
Es-Souni M. Creep deformation behavior of three high-temperature near α-Ti alloys: IMI 834, IMI 829, and IMI 685.
Metall. Mater. Trans. A,2001,32(2):285
|
CSCD被引
9
次
|
|
|
|
9.
Balasundar I. Correlation between microstructural features and creep strain in a near-α titanium alloy processed in the α+β regime.
Mater. Sci. Eng. A,2014,609:241
|
CSCD被引
5
次
|
|
|
|
10.
Chen G. Polysynthetic twinned TiAl single crystals for high-temperature applications.
Nat Mater,2016,15(8):876
|
CSCD被引
85
次
|
|
|
|
11.
Klein T. Mechanical behavior and related microstructural aspects of a nano-lamellar TiAl alloy at elevated temperatures.
Acta Mater,2017,128:440
|
CSCD被引
13
次
|
|
|
|
12.
Sherby O D. Mechanical behavior of crystalline solids at elevated temperature.
Prog. Mater. Sci,1968,13:323
|
CSCD被引
22
次
|
|
|
|
13.
Kassner M E.
Fundamentals of creep in metals and alloys,2015
|
CSCD被引
12
次
|
|
|
|
14.
张俊善.
材料的高温变形与断裂,2007
|
CSCD被引
59
次
|
|
|
|
15.
Blum W. Dislocation mechanics of creep.
Mater. Sci. Eng. A,2009,510/511:7
|
CSCD被引
9
次
|
|
|
|
16.
Chokshi A H. An evaluation of the grain-boundary sliding contribution to creep deformation in polycrystalline alumina.
J. Mater. Sci,1990,25(7):3221
|
CSCD被引
2
次
|
|
|
|
17.
Langdon T G. Grain boundary sliding as a deformation mechanism during creep.
Philos. Mag,2006,22(178):689
|
CSCD被引
6
次
|
|
|
|
18.
Langdon T G. Creep at low stresses: An evaluation of diffusion creep and Harper-Dorn creep as viable creep mechanisms.
Metall. Mater. Trans. A,2002,33(2):249
|
CSCD被引
3
次
|
|
|
|
19.
Kassner M E. Harper-Dorn creep.
Int. J. Plast,2007,23(6):980
|
CSCD被引
3
次
|
|
|
|
20.
Kumar P. Theory for very low stress ("Harper-Dorn") creep.
Scr. Mater,2009,60(1):60
|
CSCD被引
1
次
|
|
|
|
|