局部热处理差性板提高2B06铝合金口框零件成形性的模拟研究
Simulation study on improving formability of frame parts for 2B06 aluminum alloy by local heat treatment tailored heat treated blanks
查看参考文献14篇
文摘
|
通过单向拉伸试验获得2B06铝合金原始O态和短时热处理板材的力学性能参数。采用有限元模拟方法模拟并验证了局部热处理差性板材在铝合金口框零件两次充液成形中的应用,分析了零件成形能力提高的机理。模拟结果表明:采用原始O态板材成形口框零件时,局部减薄严重,破裂危险区多发生在平面应变区域;合理的局部热处理方案使得板材具有软硬材料的梯度分布,显著提高了口框零件的成形能力。通过激光实验测温装置确定激光热处理的工艺参数,对涂有水基石墨热处理区域的板材进行热处理,使其成为差性板,再对差性板进行两次液压成形,验证了模拟的准确性。 |
其他语种文摘
|
The mechanical property parameters of original O-state and short-time heat-treated sheets for 2B06 aluminum alloy were obtained by uniaxial tensile test. Then,the application of local heat treatment tailored heat treated blanks (THTB) in the two-pass hydroforming of aluminum alloy frame parts was simulated and verified by the finite element simulation method,and the mechanism of improving the forming ability of parts was analyzed. The simulation results show that when the original O-state sheets are used to form the frame parts,the local thinning is serious,and the rupture danger zone mostly occurs in the plane strain region. Therefore,a reasonable local heat treatment scheme makes the sheet have a gradient distribution of soft and hard materials,which significantly improves the forming ability of frame parts. Furthermore,the process parameters of laser heat treatment were determined by the laser experimental temperature measuring device,and the sheet coated with the water-based graphite heat treatment zone is heat treated to make it the THTB. Finally, the THTB is hydroformed twice to verify the accuracy of the simulation. |
来源
|
锻压技术
,2020,45(2):61-66 【扩展库】
|
DOI
|
10.13330/j.issn.1000-3940.2020.02.010
|
关键词
|
局部热处理
;
差性板
;
铝合金
;
局部硬化
;
两道次液压成形
|
地址
|
1.
沈阳航空航天大学机电工程学院, 辽宁, 沈阳, 110136
2.
中国科学院金属研究所, 辽宁, 沈阳, 110016
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-3940 |
学科
|
金属学与金属工艺 |
基金
|
国家自然科学基金
;
国家自然科学基金青年科学基金
;
沈阳市重点科技研发计划对外科技交流合作专项
|
文献收藏号
|
CSCD:6660650
|
参考文献 共
14
共1页
|
1.
邓学峰. 铝合金成形性及成形工艺研究现状.
材料导报,2005,12(19):56-59
|
CSCD被引
4
次
|
|
|
|
2.
Merklein M. A review on tailored blanks-Production,applications and evaluation.
Journal of Materials Processing Technology,2014,214(2):151-164
|
CSCD被引
51
次
|
|
|
|
3.
Haase C. Zur frage der kalt-und warmaushartung bei Aluminium-magnesium-silizium-legierungen.
Zeitschrift fur Metallkunde,1941,33:399-403
|
CSCD被引
1
次
|
|
|
|
4.
Geiger M. An inverse approach to the numerical design of the process sequence of tailored heat treated blanks.
Production Engineering,2008,2(1):15-20
|
CSCD被引
5
次
|
|
|
|
5.
Hofmann A. Deep drawing of process optimized blanks.
Journal of Materials Processing Technology,2001,119(1/3):127-132
|
CSCD被引
4
次
|
|
|
|
6.
Hung N. Improved formability of aluminum alloys using laser induced hardening of tailored heat treated blanks.
Physics Procedia,2012,39:318-326
|
CSCD被引
8
次
|
|
|
|
7.
Geiger M. Finite element simulation of deep drawing of tailored heat treated blanks.
CIRP Annals,2004,2:223-226
|
CSCD被引
6
次
|
|
|
|
8.
Siefert K. Enhancement of forming limits of aluminum alloys using an intermediate heat treatment.
AIP Conference Proceedings,2011,1315(1):359-364
|
CSCD被引
2
次
|
|
|
|
9.
Alexander K. Influence of a short term heat treatment by conduction and induction on the mechanical properties of AA6014 alloys.
Physics Procedia,2014,56(3):1410-1418
|
CSCD被引
4
次
|
|
|
|
10.
Zarini S. Formability enhancement of Al 6060 sheets through fiber laser heat treatment.
Int. J. Mater. Form,2017,10:741-751
|
CSCD被引
2
次
|
|
|
|
11.
Vollertsen F. Modelling the deep drawing of process optimized blanks.
Proc. 20th Biennial IDDRG Congress,2000
|
CSCD被引
2
次
|
|
|
|
12.
Kahrimanidis A. Approach to minimize the distortion of 6XXX-aluminum tailor heat treated blanks in industrial applications.
Production Engineering,2015,9(5/6):569-576
|
CSCD被引
3
次
|
|
|
|
13.
Vollertsen F. Enhancement of drawability by local heat treatment.
CIRP Annals-Manufacturing Technology,1998,47(1):181-184
|
CSCD被引
1
次
|
|
|
|
14.
Geiger M. Aluminum tailored heat treated blanks.
Production Engineering,2009,3(4/5):401
|
CSCD被引
3
次
|
|
|
|
|