抗氢合金J75中低ΣCSL 晶界的形成与演化
Formation and Evolution of Low ΣCSL Grain Boundaries in J75 Hydrogen-Resistant Alloy
查看参考文献33篇
文摘
|
以铁镍基抗氢合金J75为研究对象,采用单步形变热处理和电子背散射衍射(EBSD)技术,研究了低ΣCSL晶界的形成和演化过程。结果表明:采用5%预变形+1000 ℃退火的单步形变热处理方法,可将J75合金中低ΣCSL晶界的比例提升至70%以上,形成具有Σ3~n取向关系的晶粒团簇;退火过程中,低ΣCSL晶界比例的提升主要是由于Σ3n界面比例的提升,其中Σ3占绝大比例。发现一种Σ3再生过程,其机制在于:由于Σ3_(ic)迁移能力强,在退火过程中与其他Σ3相遇会形成Σ9晶界,而Σ9与Σ3相遇,倾向于发生Σ9+Σ3→Σ3,导致Σ3的再生;不连续大角度随机晶界(R)与低ΣCSL晶界相遇会形成R/Σ晶界,当R/Σ晶界为低ΣCSL晶界时,则构成较多具有低ΣCSL晶界的网络,打断了R晶界的连通性。 |
其他语种文摘
|
The researches in the area of grain boundary engineering were mainly focused on the relationship between process, microstructure and properties. However, little attention had been paid to the formation and evolution process of low ΣCSL grain boundaries. To better understand the dynamic process, electron backscatter diffraction (EBSD) was used to analyze the grain boundary migration and evolution in J75 alloy. Single-step deformation heat treatment with 5% pre-deformation and 1000 ℃ annealing was used to increase the proportion of low-ΣCSL grain boundaries to over 70%, and formed grain clusters with Σ3~n orientation relationship to break the connectivity of random grain boundaries. During the annealing process, the migration ability of Σ3_(ic) was strong, and when it encountered other Σ3, Σ9 would be formed; in addition, Σ3 with Σ9 would lead toΣ3+Σ9→ Σ27 or Σ9+Σ3→Σ3 processes, and the latter was more likely to occur. The Σ3 regeneration was closely related to the Σ3ic grain boundary; a mechanism for breaking the connectivity of random grain boundary network was proposed. When random grain boundary met low ΣCSL grain boundary, R/Σ would form. If the ratio (R/Σ)≤29, the connectivity of random grain boundaries network could be interrupted. |
来源
|
稀有金属材料与工程
,2020,49(1):131-137 【核心库】
|
关键词
|
铁镍基合金
;
J75
;
低ΣCSL 晶界
;
晶界特征分布
;
晶界演化
|
地址
|
1.
中国科学院金属研究所, 中国科学院核用材料与安全评价重点实验室, 辽宁, 沈阳, 110016
2.
中国科学技术大学材料科学与工程学院, 辽宁, 沈阳, 110016
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1002-185X |
学科
|
金属学与金属工艺 |
基金
|
国家自然科学基金委员会-中国工程物理研究院“NSAF联合基金”
|
文献收藏号
|
CSCD:6659421
|
参考文献 共
33
共2页
|
1.
Watanable T.
Res Mechanica,1984,11(1):47
|
CSCD被引
5
次
|
|
|
|
2.
Xia S.
Journal of Materials Science,2008,43(9):2990
|
CSCD被引
21
次
|
|
|
|
3.
Shimada M.
Acta Materialia,2002,50(9):2331
|
CSCD被引
84
次
|
|
|
|
4.
Lillo T.
Metallurgical and Materials Transactions A,2009,40(12):2803
|
CSCD被引
4
次
|
|
|
|
5.
Otto F.
Journal of Materials Science,2012,47(6):2915
|
CSCD被引
1
次
|
|
|
|
6.
Bechtle S.
Acta Materialia,2009,57(14):4148
|
CSCD被引
21
次
|
|
|
|
7.
Telang A.
Acta Materialia,2016,113:180
|
CSCD被引
9
次
|
|
|
|
8.
Telang A.
Materials Science & Engineering A,2015,648:280
|
CSCD被引
7
次
|
|
|
|
9.
Michiuchi M.
Acta Materialia,2006,54(19):5179
|
CSCD被引
39
次
|
|
|
|
10.
Fang X.
Materials Science and Engineering A,2008,487(1/2):7
|
CSCD被引
19
次
|
|
|
|
11.
Liu T.
Materials Letters,2014,133(10):97
|
CSCD被引
17
次
|
|
|
|
12.
夏爽. 高温退火过程中铅合金晶界特征分布的演化.
金属学报,2006,42:129
|
CSCD被引
17
次
|
|
|
|
13.
Pinto A L.
Materials Science and Engineering: A,2007,445/446:14
|
CSCD被引
2
次
|
|
|
|
14.
Randle V.
Metallurgical and Materials Transactions A,2002,33(6):1853
|
CSCD被引
3
次
|
|
|
|
15.
Mandal S.
Journal of Materials Science,2010,46(1):275
|
CSCD被引
1
次
|
|
|
|
16.
Li B.
Materials Science and Engineering A,2014,603:104
|
CSCD被引
3
次
|
|
|
|
17.
Schuh C A.
Acta Materialia,2003,51(3):687
|
CSCD被引
18
次
|
|
|
|
18.
Alexandreanu B.
Materials Science and Engineering A,2001,300(1):94
|
CSCD被引
7
次
|
|
|
|
19.
Wang W G.
Materials Science and Engineering A,2007,445(6):155
|
CSCD被引
15
次
|
|
|
|
20.
Sakaguchi N.
Journal of the Japan Institute of Metals,2007,72(11):886
|
CSCD被引
1
次
|
|
|
|
|