钛合金表面Al_2O_3陶瓷膜制备及性能研究
Preparation and Properties of Alumina Ceramic Film on Ti-alloy Surface
查看参考文献26篇
文摘
|
采用多弧离子镀技术在TC4钛合金表面制备了厚度约40 μm的纯Al层,然后在恒流模式下对其进行不同时间的微弧氧化处理,以获得耐磨的Al_2O_3陶瓷膜。采用扫描电镜、X射线衍射仪、显微硬度计、摩擦磨损试验机和拉伸试验机对钛合金镀铝层微弧氧化膜的微观组织结构、显微硬度、耐磨性和结合力进行了观察和测量。结果表明:微弧氧化陶瓷层主要由γ-Al_2O_3和α-Al_2O_3以及少量的非晶相SiO_2组成,膜层均匀、致密。随着微弧氧化时间的延长,Al_2O_3陶瓷层厚度增加,镀铝层厚度减小。微弧氧化3 h时,Al_2O_3膜致密层硬度达到1261 HV。氧化4 h,Al_2O_3陶瓷层厚达60~70 μm,镀铝层几乎全部氧化,钛合金基材亦发生轻微氧化;但是,基体钛合金的氧化反而导致Al_2O_3膜层内形成贯穿裂纹等缺陷,膜层硬度下降,膜层与钛合金基材的结合强度降低。Al_2O_3陶瓷膜的摩擦系数较钛合金基材的有所降低,磨损量明显降低。Al_2O_3陶瓷膜/镀铝层/钛合金体系结合强度大于40 MPa,最高可达68 MPa。 |
其他语种文摘
|
The application of Ti-alloys is restricted to its low hardness and poor wear resistance. In this paper, a pure Al-fim of 40 μm in thickness was deposited on the surface of TC4 Ti-alloy by multi-arc ion plating, and then micro-arc oxidation (MAO) in constant current mode was carried out to obtain wearresistant ceramic films. The microstructure, microhardness, wear resistance and bonding strength of MAO films were characterized by mean of SEM, XRD, micro hardness tester etc. The results show that the ceramic film is mainly composed of γ-Al_2O_3, α-Al_2O_3 and a small amount of amorphous SiO_2, and the film is uniform and compact. With the increase of the MAO time, the thickness of alumina ceramic film increases. The hardness of the dense portion of MAO coating is 1261 HV after micro-arc oxidation for 3 h. For the case of micro-arc oxidation for 4 h, the thickness of the generated alumina ceramic film is 60~ 70 μm, while almost the entire pre-deposited Al-film is oxidized, and the substrate Ti-alloy is slightly oxidized. At the same time, some penetration cracks in the oxide film was found, therefore, the hardness of the film and the bonding strength between the film and substrate all decrease. The friction coefficient of MAO ceramic film is lower than that of Ti-alloy substrate, and the wear rate is also obviously reduced. In sum, the bonding strength of MAO ceramic films with the substrate is higher than 40 MPa, whereas, the maximum bonding strength can reach 68 MPa. |
来源
|
中国腐蚀与防护学报
,2019,39(6):469-476 【核心库】
|
DOI
|
10.11902/1005.4537.2018.173
|
关键词
|
钛合金
;
离子镀铝
;
微弧氧化
;
微观结构
;
耐磨性
;
结合强度
|
地址
|
1.
辽宁科技大学材料与冶金学院, 鞍山, 114051
2.
中国科学院金属研究所, 沈阳, 110016
3.
大连华锐重工起重机有限公司, 大连, 116052
4.
福建龙溪轴承(集团) 股份有限公司, 漳州, 363000
5.
东北大学材料科学与工程学院, 沈阳材料科学国家研究中心, 沈阳, 110819
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1005-4537 |
学科
|
金属学与金属工艺 |
基金
|
国家自然科学基金
;
辽宁科技大学研究生教育改革与创新项目
;
辽宁省教育科学“十三五”规划重点课题
;
STS计划配套项目
|
文献收藏号
|
CSCD:6649113
|
参考文献 共
26
共2页
|
1.
Aliofkhazraei M. Ceria embedded nanocomposite coating fabricated by plasma electrolytic oxidation on titanium.
J. Alloy. Compd,2016,685:376
|
CSCD被引
9
次
|
|
|
|
2.
Choi B J. Microstructure and friction/wear behavior of (TiB+TiC) particulate-reinforced titanium matrix composites.
Wear,2014,318:68
|
CSCD被引
13
次
|
|
|
|
3.
Parlikar C. Effect of oxidation resistant Al_3Ti coating on tensile properties of a near α-Ti alloy.
Surf. Coat. Technol,2013,236:107
|
CSCD被引
2
次
|
|
|
|
4.
Wang S X. Microstructure and elevated temperature tribological behavior of TiO_2/Al_2O_3 composite ceramic coating formed by microarc oxidation of Ti6Al4V alloy.
Surf. Coat. Technol,2015,272:343
|
CSCD被引
10
次
|
|
|
|
5.
Sitek R. Microstructure and properties of titanium aluminides on Ti6Al4V titanium alloy produced by chemical vapor deposition method.
Intermetallics,2013,36:36
|
CSCD被引
5
次
|
|
|
|
6.
Guo C. Microstructure and friction and wear behavior of laser boronizing composite coatings on titanium substrate.
Appl. Surf. Sci,2011,257:4398
|
CSCD被引
15
次
|
|
|
|
7.
Gao C. Electrochemically promoted electroless nickel-phosphorous plating on titanium substrate.
Appl. Surf. Sci,2017,397:912
|
CSCD被引
11
次
|
|
|
|
8.
Spies H J. Surface engineering of aluminium and titanium alloys: An overview.
Surf. Eng,2010,26:126
|
CSCD被引
3
次
|
|
|
|
9.
Zhecheva A. Enhancing the microstructure and properties of titanium alloys through nitriding and other surface engineering methods.
Surf. Coat. Technol,2005,200:2192
|
CSCD被引
55
次
|
|
|
|
10.
付颖. 钛合金表面耐磨涂层研究进展.
中国腐蚀与防护学报,2018,38:117
|
CSCD被引
12
次
|
|
|
|
11.
Vladimirov B V. Microarc oxidation of magnesium alloys: A review.
Surf. Eng. Appl. Electrochem,2014,50:195
|
CSCD被引
16
次
|
|
|
|
12.
Sanchez A G. Surface modification of zirconium by anodisation as material for permanent implants: in vitro and in vivo study.
J. Mater. Sci. Mater. Med,2013,24:161
|
CSCD被引
1
次
|
|
|
|
13.
Zheng B J. Microbial influenced corrosion behavior of micro-arc oxidation coating on AA2024.
Surf. Coat. Technol,2013,216:100
|
CSCD被引
8
次
|
|
|
|
14.
Matykina E. Stability of plasma electrolytic oxidation coating on titanium in artificial saliva.
J. Mater. Sci. Mater. Med,2013,24:37
|
CSCD被引
3
次
|
|
|
|
15.
Shokouhfar M. Formation mechanism and surface characterization of ceramic composite coatings on pure titanium prepared by micro-arc oxidation in electrolytes containing nanoparticles.
Surf. Coat. Technol,2016,291:396
|
CSCD被引
28
次
|
|
|
|
16.
李青彪. 钛合金表面耐磨润滑微弧氧化膜的研究进展.
材料保护,2017,50(8):63
|
CSCD被引
7
次
|
|
|
|
17.
Xue W B. Structure and properties characterization of ceramic coatings produced on Ti-6Al-4V alloy by microarc oxidation in aluminate solution.
Mater. Lett,2002,52:435
|
CSCD被引
83
次
|
|
|
|
18.
Yerokhin A L. Characterisation of oxide films produced by plasma electrolytic oxidation of a Ti-6Al-4V Alloy.
Surf. Coat. Technol,2000,130:195
|
CSCD被引
87
次
|
|
|
|
19.
Qin Y K. Compositions and tribological properties of PEO coatings on Ti6Al4V alloy.
Surf. Eng,2017,33:895
|
CSCD被引
7
次
|
|
|
|
20.
Lu C. Microstructure and tribological properties of microarc oxidation coatings on Al-Si Alloy.
Key Eng. Mater,2016,703:112
|
CSCD被引
3
次
|
|
|
|
|