大陆板片-地幔相互作用:来自大别造山带碰撞后安山质火山岩的地球化学证据
Continental Slab-Mantle Interaction: Geochemical Evidence from Post-Collisional Andesitic Rocks in the Dabie Orogen
查看参考文献61篇
文摘
|
俯冲到地幔深度的地壳物质不可避免地在板片-地幔界面与地幔楔发生相互作用,由此形成的超镁铁质交代岩就是造山带镁铁质火成岩的地幔源区.因此,造山带镁铁质火成岩为研究俯冲地壳物质再循环和壳-幔相互作用提供了重要研究对象.为了揭示俯冲陆壳物质再循环的机制和过程,对大别造山带碰撞后安山质火山岩开展了元素和同位素地球化学研究.这些安山质火山岩的SIMS锆石U-Pb年龄为124±3~130±2 Ma,表明其形成于早白垩世.此外,残留锆石的U-Pb年龄为中新元古代和三叠纪,分别对应于大别-苏鲁造山带超高压变火成岩的原岩年龄和变质年龄.它们具有岛弧型微量元素特征、富集的Sr-Nd-Hf同位素组成,以及变化的且大多不同于正常地幔的锆石δ~(18)O值.这些元素和同位素特征指示,这些安山质火山岩是交代富集的造山带岩石圈地幔部分熔融的产物.在三叠纪华南陆块俯冲于华北陆块之下的过程中,俯冲华南陆壳来源的长英质熔体交代了上覆华北岩石圈地幔楔橄榄岩,大陆俯冲隧道内的熔体-橄榄岩反应产生了富沃、富集的镁铁质地幔交代岩.这种地幔交代岩在早白垩世发生部分熔融,就形成了所观察到的安山质火山岩.因此,碰撞造山带镁铁质岩浆岩的地幔源区是通过大陆俯冲隧道内板片-地幔相互作用形成的,而加入地幔楔中长英质熔体的比例决定了这些镁铁质岩浆岩的岩石化学和地球化学成分. |
其他语种文摘
|
Crustal material subducted to mantle depths inevitably interacted with the mantle wedge at the slab-mantle interface. This may generate a variety of ultramafic metasomatites that served as the mantle source of mafic igneous rocks in collisional orogens. Therefore, mafic igneous rocks in collisional orogens are the important target to study the recycling of subdcuted crustal materials and its associated crust-mantle interaction. In order to decipher the mechanism and processes of the recycling of subducted continental crustal materials, a combined study of element and isotope geochemistry was performed for post-collisional andesitic volcanics from the Dabie orogen, China. SIMS zircon U-Pb ages for these volcanic rocks are 124±3 to 130±2 Ma, indicating that they formed at Early Cretaceous. In addition, the relict zircons have Middle Neoproterozoic and Triassic U-Pb ages, respectively, corresponding to the ages of protolith formation and ultrahigh-pressure metamorphism (UHP) for UHP metaigenous rocks in the Dabie-Sulu orogenic belt. They have island-arc basalts (IAB)-like trace-element patterns, enriched Sr-Nd-Hf isotope compositions, and variable zircon δ~(18)O values mostly different from the normal mantle. These element and isotope features indicate that the post-collisional andesitic volcanics are the products of partial melting of metasomatically enriched orogenic lithospheric mantle. During the Triassic subduction of the South China block (SCB) beneath the North China block (NCB), the overlying NCB lithospheric mantle wedge peridotite was metasomatized by felsic melts originated from the subdcuted SCB continental crust, the melt-peridotite reaction in the continental subduction channel generated fertile and enriched metasomatites of mafic composition. Partial melting of such metasomatites in the Early Cretaceous gave rise to these andesitic volcanics. Therefore, the mantle sources for post-collisional mafic igneous rocks in collisional orogens would be generated by the slab-mantle interaction in continental subduction channel, and the lithochemical and geochemical composition of these mafic rocks is dictated by the proportion of felsic melts incorporating into the mantle wedge. |
来源
|
地球科学
,2019,44(12):4119-4127 【核心库】
|
DOI
|
10.3799/dqkx.2019.244
|
关键词
|
安山岩
;
碰撞造山带
;
板片-地幔相互作用
;
熔体-橄榄岩反应
;
俯冲隧道
;
地球化学
|
地址
|
1.
中国科学技术大学地球和空间科学学院, 中国科学院壳幔物质与环境重点实验室, 安徽, 合肥, 230026
2.
中国科学院比较行星学卓越创新中心, 中国科学院比较行星学卓越创新中心, 安徽, 合肥, 230026
3.
中国科学院广州地球化学研究所, 同位素地球化学国家重点实验室, 广东, 广州, 510640
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-2383 |
学科
|
地质学 |
基金
|
国家973计划
|
文献收藏号
|
CSCD:6645316
|
参考文献 共
61
共4页
|
1.
Chen L. Origin of Continental Arc Andesites:The Composition of Source Rocks is the Key.
Journal of Asian Earth Sciences,2017,145:217-232
|
CSCD被引
17
次
|
|
|
|
2.
Chen L. Origin of Andesitic Rocks: Geochemical Constraints from Mesozoic Volcanics in the Luzong Basin,South China.
Lithos,2014,190/191:220-239
|
CSCD被引
45
次
|
|
|
|
3.
Chopin C. Coesite and Pure Pyrope in High-Grade Blueschists of the Western Alps: A First Record and Some Consequences.
Contributions to Mineralogy and Petrology,1984,86(2):107-118
|
CSCD被引
161
次
|
|
|
|
4.
Cloos M. Subduction-Channel Model of Prism Accretion,Melange Formation,Sediment Subduction, and Subduction Erosion at Convergent Plate Margins: 1. Background and Description.
Pure and Applied Geophysics PAGEOPH,1988,128(3/4):455-500
|
CSCD被引
45
次
|
|
|
|
5.
Cloos M. Subduction-Channel Model of Prism Accretion,Melange Formation,Sediment Subduction, and Subduction Erosion at Convergent Plate Margins: 2. Implications and Discussion.
Pure and Applied Geophysics PAGEOPH,1988,128(3/4):501-545
|
CSCD被引
44
次
|
|
|
|
6.
Dai F Q. Slab-Mantle Interaction in the Petrogenesis of Andesitic Magmas:Geochemical Evidence from Postcollisional Intermediate Volcanic Rocks in the Dabie Orogen, China.
Journal of Petrology,2016,57(6):1109-1134
|
CSCD被引
9
次
|
|
|
|
7.
Dai F Q. Partial Melting of the Orogenic Lower Crust: Geochemical Insights from Post-Collisional Alkaline Volcanics in the Dabie Orogen.
Chemical Geology,2017,454:25-43
|
CSCD被引
7
次
|
|
|
|
8.
Dai F Q. The Geochemical Nature of Mantle Sources for Two Types of Cretaceous Basaltic Rocks from Luxi and Jiaodong in East-Central China.
Lithos,2019,344/345:409-424
|
CSCD被引
10
次
|
|
|
|
9.
Dai L Q. Geochemical Insights into the Role of Metasomatic Hornblendite in Generating Alkali Basalts.
Geochemistry,Geophysics,Geosystems,2014,15(10):3762-3779
|
CSCD被引
20
次
|
|
|
|
10.
Dai L Q. Tectonic Development from Oceanic Subduction to Continental Collision:Geochemical Evidence from Postcollisional Mafic Rocks in the Hong'an-Dabie Orogens.
Gondwana Research,2015,27(3):1236-1254
|
CSCD被引
24
次
|
|
|
|
11.
Dai L Q. Zircon Hf-O Isotope Evidence for Crust-Mantle Interaction during Continental Deep Subduction.
Earth and Planetary Science Letters,2011,308(1):229-244
|
CSCD被引
51
次
|
|
|
|
12.
Dai L Q. The Nature of Orogenic Lithospheric Mantle: Geochemical Constraints from Postcollisional Mafic-Ultramafic Rocks in the Dabie Orogen.
Chemical Geology,2012,334:99-121
|
CSCD被引
34
次
|
|
|
|
13.
Dai L Q. Geochemical Distinction between Carbonate and Silicate Metasomatism in Generating the Mantle Sources of Alkali Basalts.
Journal of Petrology,2017,58(5):863-884
|
CSCD被引
11
次
|
|
|
|
14.
Dai L Q. Recycling of Paleotethyan Oceanic Crust: Geochemical Record from Postcollisional Mafic Igneous Rocks in the Tongbai-Hong'an Orogens.
Geological Society of America Bulletin,2017,129(1/2):179-192
|
CSCD被引
8
次
|
|
|
|
15.
Fan W M. Late Mesozoic Volcanism in the Northern Huaiyang Tectono-Magmatic Belt, Central China: Partial Melts from a Lithospheric Mantle with Subducted Continental Crust Relicts beneath the Dabie Orogen?.
Chemical Geology,2004,209(1/2):27-48
|
CSCD被引
55
次
|
|
|
|
16.
Gomez-Tuena A. An Introduction to Orogenic Andesites and Crustal Growth.
Geological Society, London, Special Publications, 385 (1),2014:1-13
|
CSCD被引
2
次
|
|
|
|
17.
Hacker B R. Differentiation of the Continental Crust by Relamination.
Earth and Planetary Science Letters,2011,307(3/4):501-516
|
CSCD被引
57
次
|
|
|
|
18.
Hawkesworth C J. Element Fluxes Associated with Subduction Related Magmatism.
Philosophical Transactions of the Royal Society,1991,335(1638):393-405
|
CSCD被引
21
次
|
|
|
|
19.
Hildreth W. Crustal Contributions to Arc Magmatism in the Andes of Central Chile.
Contributions to Mineralogy and Petrology,1988,98(4):455-489
|
CSCD被引
144
次
|
|
|
|
20.
Hirose K. Melting Experiments on Lherzolite KLB-1 under Hydrous Conditions and Generation of High Magnesian Andesitic Melts.
Geology,1997,25(1):42-44
|
CSCD被引
79
次
|
|
|
|
|