考虑导弹速度变化的攻击时间和攻击角度控制滑模制导律
Sliding Mode Guidance Law With Impact Time and Impact Angle Control Under Varying Missile Velocity
查看参考文献15篇
文摘
|
为了解决导弹速度变化时对攻击时间和攻击角度的控制问题,提出了一种基于成型理论和非奇异终端滑模理论的攻击时间和攻击角度控制制导律,并证明了该制导律的Lyapunov稳定性。以弹目相对运动关系为基础,将导弹速度变化的制导律问题转化为导弹速度恒定的制导律问题。利用成型理论构造视线角多项式,通过数值方法计算其系数,得到了满足攻击时间和攻击角度约束的理想视线角表达式。基于非奇异终端滑模理论设计了导弹法向加速度,使导弹实际视线角按照理想视线角变化,实现了攻击时间和攻击角度控制。不同条件下的数值仿真结果验证了所设计制导律的有效性。 |
其他语种文摘
|
To solve the problem of impact time and impact angle control under varying missile velocity,a novel impact time and impact angle control guidance law was proposed for the impact time and impact angle control under varying missile velocity by using shaping theory and nonsingular terminal sliding-mode theory. It was proved that the guidance law can satisfy the Lyapunov stability criterion. Based on the relative motion model of missile-target,the guidance problem under varying missile velocity was transformed into the guidance problem under constant missile velocity. Through the shaping theory,the line-of-sight(LOS)angle polynomial was constructed,and the coefficients were calculated by numerical method,and the ideal line-of-sight angle satisfying the impact time and impact angle constraints was obtained. Based on the nonsingular terminal sliding-mode theory,the lateral acceleration of the missile was designed so that the actual LOS angle of the missile can change according to the ideal LOS angle to satisfy impact time and impact angle control. The numerical simulation results under different conditions validate the effectiveness of the proposed guidance law. |
来源
|
弹道学报
,2019,31(4):26-32 【核心库】
|
DOI
|
10.12115/j.issn.1004-499x(2019)04-005
|
关键词
|
导弹
;
制导律
;
攻击时间
;
攻击角度
;
滑模控制理论
|
地址
|
1.
南京理工大学能源与动力工程学院, 江苏, 南京, 210094
2.
西北工业集团有限公司, 陕西, 西安, 710043
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1004-499X |
学科
|
武器工业 |
基金
|
国家自然科学基金项目
|
文献收藏号
|
CSCD:6644621
|
参考文献 共
15
共1页
|
1.
Jeon I S. Impact-time-control guidance law for anti-ship missiles.
IEEE Transactions on Control Systems Technology,2006,14(2):260-266
|
CSCD被引
169
次
|
|
|
|
2.
Lee J I. Guidance law to control impact time and angle.
IEEE Transactions on Control Systems Technology,2007,43(1):301-310
|
CSCD被引
4
次
|
|
|
|
3.
王晓芳. 一种同时具有攻击时间和攻击角度约束的协同制导律.
弹道学报,2017,29(4):1-8
|
CSCD被引
10
次
|
|
|
|
4.
张春妍. 带落角和时间约束的网络化导弹协同制导律.
兵工学报,2016,37(3):431-438
|
CSCD被引
35
次
|
|
|
|
5.
Kang S. Generalized impact time and angle control via look-angle shaping.
Journal of Guidance,Control,and Dynamics,2019,42(3):695-702
|
CSCD被引
8
次
|
|
|
|
6.
Harl N. Impact time and angle guidance with sliding mode control.
IEEE Transactions on Control Systems Technology,2012,20(6):1436-1449
|
CSCD被引
85
次
|
|
|
|
7.
Kumar S R. Sliding mode guidance for impact time and angle constraints.
Journal of Aerospace Engineering,2017,232(16):2961-2977
|
CSCD被引
5
次
|
|
|
|
8.
Chen X T. Sliding-mode guidance for simultaneous control of impact time and angle.
Journal of Guidance,Control,and Dynamics,2019,42(2):394-401
|
CSCD被引
12
次
|
|
|
|
9.
马国欣. 导弹速度时变的攻击时间与攻击角度控制导引律.
飞行力学,2013,31(3):255-259
|
CSCD被引
6
次
|
|
|
|
10.
Tekin R. Polynomial shaping of the look angle for impact-time control.
Journal of Guidance,Control,and Dynamics,2017,40(10):2666-2671
|
CSCD被引
17
次
|
|
|
|
11.
Tekin R. Adaptive impact time control via look-angle shaping under varying velocity.
Journal of Guidance,Control,and Dynamics,2017,40(12):3247-3255
|
CSCD被引
13
次
|
|
|
|
12.
Tekin R. Control of impact time with increased robustness via feedback linearization.
Journal of Guidance,Control,and Dynamics,2016,39(7):1678-1685
|
CSCD被引
8
次
|
|
|
|
13.
Zhou J. Impact-time-control guidance law for missile with time-varying velocity.
Mathematical Problems in Engineering,2016(1):1-14
|
CSCD被引
8
次
|
|
|
|
14.
Erer K S. Control of impact angle using biased proportional navigation.
AIAA Guidance,Navigation,and Control Conference,2013:5113-5128
|
CSCD被引
1
次
|
|
|
|
15.
刘金琨.
滑模变结构控制MATLAB仿真:基本理论与设计方法,2015:483-484
|
CSCD被引
1
次
|
|
|
|
|