帮助 关于我们

返回检索结果

稻田土壤镉的表面络合模型及其生物有效性验证
Surface complexation model of Cd in paddy soil and its validation with bioavailability

查看参考文献39篇

杨阳 1,2,3   彭叶棉 1,2,3   王莹 1,2,3   李芳柏 1   刘同旭 1 *  
文摘 中国南方分布的稻田土壤以酸性可变电荷土壤为主(pH < 6.5).重金属Cd作为重要污染物,其生物有效性在酸性条件下相对较高,因此,研究可变电荷稻田土壤中Cd的吸附特征并建立模型准确评价Cd的生物有效性具有重要意义.本研究通过测试不同pH下的稻田土壤Cd吸附曲线,建立了表面络合模型(SCM),模拟Cd的吸附行为;并且采用田间实验的稻米Cd累积量,对SCM预测的有效态Cd进行验证. Cd的吸附实验表明,随pH升高Cd的吸附量升高,至pH 5.5时Cd以吸附态为主.利用电位滴定实验和不同pH下Cd的吸附实验,建立了Cd吸附的1-site/2-pK表面络合模型,该模型能够很好地拟合Cd在可变电荷土壤中随pH变化的吸附特征.水稻田间实验数据表明,酸性(pH < 5.5)稻田土壤pH与水稻籽粒Cd呈显著负相关(P < 0.05),因为pH决定的吸附平衡是影响有效态Cd含量的关键;采用连续提取法获得的Cd形态(1 mol L~(-1) MgCl_2提取的可交换态和1 mol L~(-1) NaOAc/HOAc提取的碳酸盐结合态)与水稻籽粒Cd含量无显著相关(P > 0.05);而采用模型预测的溶解态Cd与水稻籽粒Cd含量极显著相关(P < 0.01),说明本模型预测的有效态Cd明显优于连续提取法.因此,应用SCM模型,可以更为准确地预测稻田土壤有效态Cd及其Cd在土壤-水界面的形态分配,为Cd的生物有效性评估提供新的思路.
其他语种文摘 In southern China, the paddy soils are mainly variable-charge soils, which have undergone high weathering processes and leaching processes. Due to deficiencies of carbonate and base cations, the variable-charge soil pH is normally less than 6.5, and decrease of soil pH can substantially enhance the mobility and bioavailability of heavy metals. Cadmium (Cd) is one of the most important pollutant influencing human health and environmental safety. Cd contamination is a serious problem in paddy soils, and the acidic condition could further aggravate the mobility and bioavailability of Cd. There is an urgent need to establish a model to investigate the adsorption characteristics of Cd and accurately assess the bioavailability of Cd in variable-charge paddy soils. In this study, the paddy soil was selected from agricultural regions in southern China. Batch experiments were conducted to investigate the Cd adsorption characteristics of the soils from pH 3 to 10. The results showed that Cd mainly existed in dissolved forms at pH < 4.0. With increasing pH, the concentration of dissolved Cd decreased but the adsorbed Cd increased. At pH > 5.5, almost all Cd was adsorbed on the soil surface. Based on the potentiometric titration, the point of zero charge (pHpzc) was obtained when the surface charge density (σ) was equal to zero. The pHpzc of the paddy soil was 5.91. The 1-site/2-pK surface complexation model (SCM) was applied to further examine the acid-base properties of the soils by assuming the acid-base buffering system as a protonation-deprotonation process. The surface site concentration (Hs) and the surface site density (Ds) were obtained by Gran plot. The two acid equilibrium constants (pKa1 and pKa2) were determined by extrapolation and the calculated pHpzc were obtained by the average values of the pKa1 and pKa2. The value of pHpzc calculated from the model was 6.10, which was well matched with those from the potentiometric titration, indicating that it is feasible for the application of SCM to the variable-charge soils. The intrinsic equilibrium constants (lgKSOCd) was estimated from the Cd adsorption experimental data and acid-base parameters (pKa1, pKa2 and Ds) using Visual MINTEQ software. The results showed that the adsorption of Cd on the paddy soil could be successfully modeled by the SCM. Based on the previous study, the pH was significantly negatively correlated with grain Cd content in paddy soil when pH was below 5.5 (P < 0.05), indicating that pH-dependent adsorption equilibrium was the main factor influencing the Cd bioavailability. The Cd in soils was sequentially extracted with 1 mol L~(-1) MgCl_2 (exchangeable fraction) and 1 mol L~(-1) NaOAc/HOAc (bound to carbonate). Although the extracted Cd was positively correlated with Cd content in grain, the P value was much higher than 0.05, indicating the insignificant correlation. Compared with the extraction method, the dissolved Cd calculated from the SCM was significantly correlated with the grain Cd content (P < 0.01), suggesting that the model-derived Cd species was much better than the extracted Cd for reflecting the Cd bioavailability in paddy soil. Hence, this study provides a new approach to investigate the adsorption characteristics of Cd in paddy soil which could be used to accurately predict the Cd bioavailability in variable-charge soils.
来源 科学通报 ,2019,64(33):3449-3457 【核心库】
DOI 10.1360/TB-2019-0097
关键词 稻田土壤 ; Cd ; 吸附 ; 生物有效性 ; 表面络合模型
地址

1. 广东省生态环境技术研究所, 广东省农业环境综合治理重点实验室, 广州, 510650  

2. 中国科学院广州地球化学研究所, 广州, 510640  

3. 中国科学院大学, 北京, 100049

语种 中文
文献类型 研究性论文
ISSN 0023-074X
学科 环境污染及其防治
基金 广东省科学院实施创新驱动发展能力建设专项 ;  国家重点研发计划 ;  佛山市科技创新项目 ;  广东省科技计划项目
文献收藏号 CSCD:6640088

参考文献 共 39 共2页

1.  Bermudez G M A. Heavy metals and trace elements in atmospheric fall-out: Their relationship with topsoil and wheat element composition. J Hazard Mater,2012,213/214:447-456 CSCD被引 22    
2.  Liu F. The dynamic simulation of rice growth parameters under cadmium stress with the assimilation of multi-period spectral indices and crop model. Field Crops Res,2015,183:225-234 CSCD被引 20    
3.  Li H. Cadmium in rice: Transport mechanisms, influencing factors, and minimizing measures. Environ Pollut,2017,224:622-630 CSCD被引 97    
4.  Hu Y. The challenges and solutions for cadmium-contaminated rice in China: A critical review. Environ Int,2016,92/93:515-532 CSCD被引 100    
5.  Seshadri B. Phosphorus-cadmium interactions in paddy soils. Geoderma,2016,270:43-59 CSCD被引 23    
6.  Wang R H. Adsorption of Cd(II) by two variable-charge soils in the presence of pectin. Environ Sci Pollut Res,2016,23:12976-12982 CSCD被引 9    
7.  Xu W. Cd uptake in rice cultivars treated with organic acids and EDTA. J Environ Sci,2010,22:441-447 CSCD被引 15    
8.  Lopez-Chuken U J. Modelling sulphate-enhanced cadmium uptake by Zea mays from nutrient solution under conditions of constant free Cd~(2+) ion activity. J Environ Sci,2010,22:1080-1085 CSCD被引 3    
9.  Lopez-Chuken U J. The use of chloro-complexation to enhance cadmium uptake by Zea mays and Brassica juncea: Testing a“free ion activity model”and implications for phytoremediation. Int J Phytoremediat,2010,12:680-696 CSCD被引 2    
10.  Meers E. Phytoavailability assessment of heavy metals in soils by single extractions and accumulation by Phaseolus vulgaris. Environ Exp Bot,2007,60:385-396 CSCD被引 23    
11.  Tessier A. Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem,1979,51:844-851 CSCD被引 1987    
12.  Davidson C M. Some sources of variability in application of the three-stage sequential extraction procedure recommended by BCR to industrially-contaminated soil. Fresenius J Anal Chem,1999,363:446-451 CSCD被引 14    
13.  Soriano-Disla J M. Evaluation of single chemical extractants for the prediction of heavy metal uptake by barley in soils amended with polluted sewage sludge. Plant Soil,2010,327:303-314 CSCD被引 4    
14.  耿增超. 土壤学,2015:118-120 CSCD被引 1    
15.  Liu Z. A simple assessment on spatial variability of rice yield and selected soil chemical properties of paddy fields in South China. Geoderma,2014,235/236:39-47 CSCD被引 8    
16.  Peng L F. Kinetics of heavy metal adsorption and desorption in soil: Developing a unified model based on chemical speciation. Geochim Cosmochim Acta,2018,224:282-300 CSCD被引 9    
17.  Zhu B. A multi-surface model to predict Cd phytoavailability to wheat (Triticum aestivum L.). Sci Total Environ,2018,630:1374-1380 CSCD被引 7    
18.  Liu G. Effect of the size of variable charge soil particles on cadmium accumulation and adsorption. J Soils Sedim,2017,17:2810-2821 CSCD被引 11    
19.  中国国家环境保护局. 土壤环境质量标准,1995 CSCD被引 1    
20.  Stumm W. The Chemistry of the Solid-water Interface,1992 CSCD被引 2    
引证文献 10

1 祝凌燕 探究环境污染过程,精准评估生态风险 科学通报,2019,64(33):3399-3400
CSCD被引 2

2 王锐 重庆市主要农耕区土壤Cd生物有效性及影响因素 环境科学,2020,41(4):1864-1870
CSCD被引 36

显示所有10篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号