近壁面柱体涡激振动的迟滞效应
HYSTERESIS IN VORTEX-INDUCED VIBRATIONS OF A NEAR-WALL CYLINDER
查看参考文献41篇
文摘
|
柱体涡激振动是典型的流固耦合问题,其响应规律大多是在升速流动和远离壁面条件下获得的.而自然环境流动通常不断经历升速和降速过程,近壁面柱体的涡激振动可呈现与远离壁面柱体不同的响应特征.本研究结合大型波流水槽,设计了具有微结构阻尼的柱体涡激振动装置.基于量纲分析,开展系列水槽模型实验,通过同步测量柱体涡激振动位移时程和绕流流场变化,研究了升降流速作用下柱体涡激振动触发和停振的临界速度(即上临界和下临界速度)变化规律,探究了近壁面柱体涡激振动迟滞效应.采用自下向上激光扫射的PIV流场测量系统,对比分析了固定柱体和涡激振动柱体的绕流特征.实验观测表明,近壁面柱体涡激振动触发的临界速度呈现随壁面间距比减小而逐渐减小的变化趋势;但流动降速条件下的涡激振动停振所对应的下临界速度却明显小于升速时的涡激振动触发所对应的上临界速度.采用上临界与下临界约减速度差值可定量表征涡激振动迟滞程度,研究发现该值随着柱体间距比减小呈线性增大趋势.涡激振动迟滞现象通常伴随振幅阶跃,振幅阶跃值则随着间距比减小而非线性减小. |
其他语种文摘
|
The vortex-induced vibration (VIV) of a cylinder is a typical fluid-solid coupling problem. Previous investigations on VIV responses were mainly made under increasing-velocity flow and wall-free conditions. Nevertheless, the natural flow always features with alternately increasing or decreasing velocities, so that the VIV response of a near-wall cylinder holds different characteristics from that of a wall-free cylinder. In this study, a VIV device for a cylinder with low structural damping was designed and constructed in conjunction with a flume. Based on dimensional analyses, a series of flume model tests were carried out to investigate the critical velocities for the initiation and the cease of VIV (i.e., the upper critical and lower critical reduced velocities) of a near-wall cylinder under the action of increasing-velocity and decreasing-velocity flows, respectively. To examine wall-proximity effects on the VIV hysteresis, synchronous measurements were made for the time-variation of vibration displacement and the corresponding flow fields around the cylinder. Meanwhile, a specially designed PIV system with bottom-up laser scanning was employed to capture the flow field characteristics. Experimental observations indicate that the critical velocity for the initiation of VIV of a near-wall cylinder decreases with the decrease of gap-to-diameter ratio. The lower-critical reduced velocity for the cease of VIV under decreasing-velocity conditions is however much smaller than the upper-critical value for the initiation of VIV under increasing-velocity conditions. The deviation of the upper-critical reduced velocity from the lower-critical one is used for quantitative characterization of the hysteresis in VIVs, which increases approximately linearly with the decrease of gap-to-diameter ratio. Moreover, it was found that such VIV hysteresis is always accompanied with the jump of vibration amplitude, whose value decreases nonlinearly with the decrease of gap-to-diameter ratio. |
来源
|
力学学报
,2019,51(6):1630-1640 【核心库】
|
DOI
|
10.6052/0459-1879-19-293
|
关键词
|
涡激振动
;
近壁面柱体
;
迟滞效应
;
临界约减速度
|
地址
|
1.
中国科学院力学研究所, 中国科学院流固耦合系统力学重点实验室, 北京, 100190
2.
中国科学院大学工程科学学院, 北京, 100049
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0459-1879 |
学科
|
海洋学;一般工业技术 |
基金
|
国家自然科学基金国家杰出青年科学基金
;
中国科学院战略性先导科技专项
|
文献收藏号
|
CSCD:6631803
|
参考文献 共
41
共3页
|
1.
Blevins R D.
Flow-induced Vibration,1990
|
CSCD被引
25
次
|
|
|
|
2.
King R. A review of vortex shedding research and its application.
Ocean Engineering,1977,4:141-172
|
CSCD被引
12
次
|
|
|
|
3.
Tsahalis D T. Vortex-induced vibrations of a flexible cylinder near a plane boundary exposed to steady and wave-induced currents.
Journal of Energy Resources Technology-Transactions of ASME,1984,106:206-213
|
CSCD被引
7
次
|
|
|
|
4.
Bryndum M B. Long free spans exposed to current and waves: Model tests.
21st Annual Offshore Technology Conference,1989:317-336
|
CSCD被引
1
次
|
|
|
|
5.
Feng C C.
The measurements of vortex-induced effects in flow past stationary and oscillating circular and D-section cylinders. [Master's Thesis],1968
|
CSCD被引
1
次
|
|
|
|
6.
Bearman P W. Vortex shedding from oscillating bluff bodies.
Annual Review of Fluid Mechanics,1984,16:195-222
|
CSCD被引
70
次
|
|
|
|
7.
Anand N M.
Free span vibrations of submarine pipelines in steady and wave flows. [PhD Thesis],1985
|
CSCD被引
1
次
|
|
|
|
8.
Govardhan R. Modes of vortex formation and frequency response of a freely vibrating cylinder.
Journal of Fluid Mechanics,2000,420:85-130
|
CSCD被引
87
次
|
|
|
|
9.
Sarpkaya T. A critical review of the intrinsic nature of vortexinduced vibrations.
Journal of Fluids and Structures,2004,19:389-447
|
CSCD被引
177
次
|
|
|
|
10.
Williamson C H K. Vortex-induced vibration.
Annual Review of Fluid Mechanics,2004,36:413-455
|
CSCD被引
174
次
|
|
|
|
11.
Wu X D. A review of recent studies on vortexinduced vibrations of long slender cylinders.
Journal of Fluids and Structures,2012,28:292-308
|
CSCD被引
28
次
|
|
|
|
12.
及春宁. 圆柱涡激振动研究进展与展望.
海洋技术学报,2015,34(1):106-118
|
CSCD被引
17
次
|
|
|
|
13.
陈伟民. 海洋柔性结构涡激振动的流固耦合机理和响应.
力学进展,2017,47:25-91
|
CSCD被引
21
次
|
|
|
|
14.
Sumer B M.
Hydrodynamics Around Cylindrical Structures,2006
|
CSCD被引
10
次
|
|
|
|
15.
Det Norske Veritas.
Free spanning pipelines.DNV Recommended Practice DNVGL-RP-F105,2017
|
CSCD被引
1
次
|
|
|
|
16.
Scruton C. On the wind-excited oscillations of towers, stacks and masts.
Proceedings of A Symposium on Wind Effects on Buildings and Structures, HMSO,1963:798-832
|
CSCD被引
1
次
|
|
|
|
17.
Skop R A. A model for the vortex-excited resonant response of bluff cylinders.
Journal of Sound and Vibration,1973,27(2):225-233
|
CSCD被引
20
次
|
|
|
|
18.
Skop R A. A new twist on an old model for vortex-excited vibrations.
Journal of Fluids and Structures,1997,11:395-412
|
CSCD被引
29
次
|
|
|
|
19.
Klamo J T. The effects of damping on the amplitude and frequency response of a freely vibrating cylinder in cross-flow.
Journal of Fluid Mechanics,2006,22:845-856
|
CSCD被引
6
次
|
|
|
|
20.
Govardhan R. Defining the‘modified Griffin plot' in vortex-induced vibration: Revealing the effect of Reynolds number using controlled damping.
Journal of Fluid Mechanics,2006,561:147-180
|
CSCD被引
30
次
|
|
|
|
|