城镇化与生态环境耦合圈理论及耦合器调控
Theoretical analysis of urbanization and eco-environment coupling coil and coupler control
查看参考文献33篇
文摘
|
城镇化与生态环境之间客观上存在着极其复杂的近远程非线性耦合关系,如何协调城镇化与生态环境的关系问题已上升为全球性战略问题和世界性科学难题。本文从理论上揭示了城镇化与生态环境交互作用的耦合性、耦合关系和耦合度;根据主控要素总结出了城镇化与生态环境耦合的10种关系和交互方式;根据耦合度强弱将耦合性分为低度耦合、较低耦合、中度耦合、较高耦合、高度耦合和完全耦合6种类型,分别对应随性耦合、间接耦合、松散耦合、协同耦合、紧密耦合和控制耦合,进而形成城镇化与生态环境耦合塔;创建了城镇化与生态环境耦合圈理论,按每旋转10°生成一个图谱构建了由直线图谱、指数曲线图谱、对数曲线图谱、双指数曲线图谱和“S”型曲线图谱等组合而成的45种耦合图谱,不同图谱对应着不同的城市发展阶段和发展模式。在多种耦合图谱中,认为“S”型曲线耦合图谱是最佳图谱,代表着多种图谱中体现城镇化与生态环境相互作用的最佳耦合状态。以“S”型曲线耦合图谱为依托,借助SD模型及各变量之间存在的一对一、一对多和多对多的复杂关系,构建了由11个调控要素和201个变量构成的耦合调控器(UEC),只要一个变量发生变化,就会牵一发而动全身,影响整个耦合调控器的结构、功能和调控结果。这种耦合调控器包括同一时间多个城市城镇化圈与生态环境圈之间的静态调控、不同时间同一城市城镇化圈与生态环境圈之间的动态调控、不同时间多个城市城镇化圈与生态环境圈之间的动态调控3种时空尺度,通过调控将逐步推动城镇化圈与生态环境圈之间由低级耦合向高级耦合方向演进。 |
其他语种文摘
|
There is an extremely complex nonlinear coupling relationship between urbanization and eco- environment. How to coordinate this relationship has become a global strategic problem and a worldwide scientific problem. First, based on theoretical analysis, this paper revealed the coupling, coupling relationship, coupling degree and coupling tower of interaction between urbanization and eco-environment. Second, by analyzing the main controlling factors,ten kinds of interaction modes between urbanization and eco- environment are summarized. Third, according to the strength of coupling degree, we have identified six coupling types,including low coupling, slight coupling, moderate coupling, high coupling, excellent coupling,and full coupling, which correspond to the random coupling, indirect coupling, loose coupling,synergistic coupling, tight coupling and control coupling, respectively. Then, urbanization and eco- environment coupling tower was formed. Finally, the theory of urbanization and ecoenvironment coupling coil was established. Through rotating the graph by 10°, we built 45 kinds of coupled graphs, including linear graph, index curve graph, logarithmic curve graph,double index curve graph and S-shaped curve graph. Different graphs represent different urban development modes, stages and characteristics. Among them, S-shaped curve coupled graph is optimal, and it reflects the best state of urbanization and eco-environment coupling. After that,we amplified the S-shaped coupled graph, and then constructed a coupler (UEC) based on the SD model and the complex relationship between different variables. The coupler consists of 11 regulatory elements and 201 variables, and can control the coupling state between urbanization coil and eco- environment coil. In general, the above control types include static control of multiple cities at the same time, dynamic control of a single city at different times, and dynamic control of multiple cities at different times. Through coupler control, urbanization coil and eco- environment coil can keep the best dynamic and orderly state. In addition, if one variable changes, the structure, function and simulation results of the coupler will also be affected. Finally, with the increase of control intensity, the coupler will gradually improve the coupling degree between urbanization coil and ecological environment coil. |
来源
|
地理学报
,2019,74(12):2529-2546 【核心库】
|
DOI
|
10.11821/dlxb201912008
|
关键词
|
耦合圈理论
;
耦合器调控
;
城镇化圈
;
生态环境圈
|
地址
|
1.
中国科学院地理科学与资源研究所, 中国科学院区域可持续发展分析与模拟重点实验室, 北京, 100101
2.
中国科学院大学资源与环境学院, 北京, 100049
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0375-5444 |
学科
|
环境保护管理 |
基金
|
国家自然科学基金重大项目
|
文献收藏号
|
CSCD:6628449
|
参考文献 共
33
共2页
|
1.
Jager J. The International Human Dimensions Programme on Global Environmental Change (IHDP).
Global Environmental Change,2003,13(1):69-73
|
CSCD被引
12
次
|
|
|
|
2.
Millennium Ecosystem Assessment.
Ecosystems and Human Well-being: Synthesis,2005
|
CSCD被引
152
次
|
|
|
|
3.
Future Earth.
Future Earth Initial Design: Report of the Transition Team,2013
|
CSCD被引
25
次
|
|
|
|
4.
Fang Chuanglin. International progress and evaluation on interactive coupling effects between urbanization and the eco-environment.
Journal of Geographical Sciences,2016,26(8):1081-1116
|
CSCD被引
47
次
|
|
|
|
5.
方创琳.
城市化过程与生态环境效应,2008:1-8
|
CSCD被引
5
次
|
|
|
|
6.
陈静生.
人类-环境系统及其可持续性,2001:22-25
|
CSCD被引
1
次
|
|
|
|
7.
Liu J G. Coupled human and natural systems.
Ambio,2007,36(8):639-649
|
CSCD被引
28
次
|
|
|
|
8.
Liu J. Framing sustainability in a telecoupled world.
Ecology and Society,2013,18(2):26-44
|
CSCD被引
19
次
|
|
|
|
9.
Sherbinin A D. Rural household demographics, livelihoods and the environment.
Global Environmental Change,2008,18(1):38-53
|
CSCD被引
28
次
|
|
|
|
10.
Dietz T. Drivers of Human Stress on the environment in the twenty-first century.
Annual Review of Environment & Resources,2017,42(1):189-213
|
CSCD被引
8
次
|
|
|
|
11.
Hummel D. Inter-and transdisciplinary approaches to population-environment research for sustainability aims: A review and appraisal.
Population & Environment,2013,34(4):481-509
|
CSCD被引
5
次
|
|
|
|
12.
Ostrom E. A general framework for analyzing sustainability of social-ecological systems.
Science,2009,325(5939):419-422
|
CSCD被引
162
次
|
|
|
|
13.
Steffen W. Planetary boundaries: Guiding human development on a changing planet.
Science,2015,347(6223):736-747
|
CSCD被引
135
次
|
|
|
|
14.
Tscherning K. Does research applying the DPSIR framework support decision making?.
Land Use Policy,2012,29(1):102-110
|
CSCD被引
21
次
|
|
|
|
15.
Gunderson L H.
Panarchy: Understanding Transformations in Human and Natural Systems,2001
|
CSCD被引
15
次
|
|
|
|
16.
Dietz T. The struggle to govern the commons.
Science,2003,302(5652):1907-1912
|
CSCD被引
25
次
|
|
|
|
17.
Folke C. Resilience: The emergence of a perspective for social-ecological systems analyses.
Global Environmental Change,2006,16(3):253-267
|
CSCD被引
139
次
|
|
|
|
18.
Liu J. Integration across a metacoupled world.
Ecology and Society,2017,22(4):29-47
|
CSCD被引
13
次
|
|
|
|
19.
乔标. 城市化与生态环境协调发展的动态耦合模型及其在干旱区的应用.
生态学报,2005,25(11):3003-3009
|
CSCD被引
111
次
|
|
|
|
20.
李崇明. 小城镇资源环境与社会经济协调发展评价模型及应用研究.
系统工程理论与实践,2004,24(11):134-139
|
CSCD被引
41
次
|
|
|
|
|