基于下陷内包层设计的大芯径掺氟光纤表征及性能
Characterization and Properties of Large-core Fluorine-doped Fibers Based on Depressed Inner Cladding Design
查看参考文献23篇
文摘
|
采用体式显微镜、扫描电子显微镜、拉曼光谱表征了不同氟浓度、波导结构条件下光纤预制棒锥区及光纤的表面形貌与微观结构,用光纤综合参数分析仪、自制输出激光刀头分析了大芯径掺氟包层光纤的损耗、激光传输效率.结果表明:随着氟含量的升高,氟挥发现象愈加明显,传统大芯径掺氟包层光纤表面产生的裂纹、凹坑等缺陷增多,光纤损耗略有增加,激光传输效率下降;采用下陷掺氟内包层设计有效抑制了大芯径掺氟包层光纤制备过程中的氟挥发、析晶现象,1 200 nm波段光纤损耗为3.99 dB/km,平形和球形光纤2μm波段的激光传输效率分别达到88.9%和88.4%,性能明显高于传统结构光纤. |
其他语种文摘
|
The surface morphology and microstructure of fiber preform taper zones and fibers with different fluorine content and waveguide structure were characterized by stereomicroscopy,scanning electron microscopy and Raman spectroscopy.The loss and laser transmission efficiency of large-core fibers with fluorine-doped cladding were analyzed by fiber analysis system and self-made output laser probe.The results show that the fluorine volatilization phenomenon becomes more obvious with the increase of fluorine content.As a result,the surface defects of traditional large-core fibers with fluorinedoped cladding increase,such as cracks and pits.Simultaneously,the fiber loss increases slightly and the laser transmission efficiency decreases.Moreover,the fluorine volatilization and crystallization during the fabrication process of large-core fibers with fluorine-doped cladding are effectively suppressed through subsidence fluorine-doped inner cladding design.Thus,the fiber loss at 1 200 nm is 3.99 dB/km,and the laser transmission efficiency at 2μm of flat and spherical fibers is 88.9%and 88.4%,respectively.It can be obviously seen that its property is better than that of traditional fibers. |
来源
|
光子学报
,2019,48(11):1148013 【核心库】
|
DOI
|
10.3788/gzxb20194811.1148013
|
关键词
|
氟挥发
;
传能光纤
;
医用光纤
;
掺氟光纤
;
医用激光刀头
;
传输效率
|
地址
|
1.
中国科学院西安光学精密机械研究所, 瞬态光学与光子技术国家重点实验室, 西安, 710119
2.
中国科学院大学, 北京, 100049
3.
陕西师范大学物理学与信息技术学院, 西安, 710119
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1004-4213 |
学科
|
电子技术、通信技术 |
基金
|
国家973计划
;
中科院创新交叉团队项目
|
文献收藏号
|
CSCD:6626469
|
参考文献 共
23
共2页
|
1.
Ozgur Y. Bundled hollow optical fibers for transmission of high-peak-power Q-switched Nd:YAG laser pulses.
Applied Optics,2006,45(27):7174-7178
|
CSCD被引
1
次
|
|
|
|
2.
赵兴海. 高峰值功率脉冲激光的光纤传能特性.
红外与激光工程,2008,37(3):444-448
|
CSCD被引
10
次
|
|
|
|
3.
Kajihara K. 60 Coγ-ray-induced intrinsic defect processes in fluorine-doped synthetic SiO_2glasses of different fluorine concentrations.
Materials Science and Engineering:B,2009,161(1/3):96-99
|
CSCD被引
3
次
|
|
|
|
4.
Jauregui C. High-power fibre lasers.
Nature Photonics,2013,7(11):861-867
|
CSCD被引
147
次
|
|
|
|
5.
Okamoto K. Temperature dependence of radiation induced optical transmission loss in fused silica core optical fibers.
Journal of Nuclear Materials,2004,329/333(Part B):1503-1506
|
CSCD被引
1
次
|
|
|
|
6.
Calderon A. Effects ofγand neutron irradiation on the optical absorption of pure silica core single-mode optical fibres from Nufern.
Nuclear Instruments and Methods in Physics Research Section A:Accelerators,Spectrometers,Detectors and Associated Equipment,2006,565(2):599-602
|
CSCD被引
1
次
|
|
|
|
7.
Nilsson J. High-power fiber lasers.
Science,2011,332:921-922
|
CSCD被引
38
次
|
|
|
|
8.
江源. 光纤在激光医学治疗上的应用.
激光杂志,2007,28(4):9-11
|
CSCD被引
3
次
|
|
|
|
9.
Di F D. X-ray irradiation effects on fluorine-doped germanosilicate optical fibers.
Optical Materials Express,2014,4(8):1683-1695
|
CSCD被引
1
次
|
|
|
|
10.
Kim Y. Gamma-ray radiation response at 1550nm of fluorine-doped radiation hard single-mode optical fiber.
Optics Express,2016,24(4):3910-3920
|
CSCD被引
3
次
|
|
|
|
11.
Kabir S. Bending resistive improved effective mode area fluorine doped quadrilateral shaped core photonic crystal fiber for high power fiber lasers.
Optik,2018,162:206-213
|
CSCD被引
3
次
|
|
|
|
12.
Saeed M A. Thermoluminescence response of multimode fluorine-doped SiO_2optical fibers and TLD 100with 6mega volt photon irradiation.
High Energy Chemistry,2015,49(3):146-149
|
CSCD被引
1
次
|
|
|
|
13.
Zabezhailov M O. The role of fluorine-doped cladding in radiationinduced absorption of silica optical fibers.
IEEE Transactions on Nuclear Science,2002,49(3):1410-1413
|
CSCD被引
4
次
|
|
|
|
14.
Origlio G. Irradiation induced defects in fluorine doped silica.
Nuclear Instruments and Methods in Physics Research Section B,2008,266(12/13):2918-2922
|
CSCD被引
2
次
|
|
|
|
15.
Giordano D. The combined effects of water and fluorine on the viscosity of silicic magmas.
Geochimica et Cosmochimica Acta,2004,68(24):5159-5168
|
CSCD被引
6
次
|
|
|
|
16.
Kirchhof J. Thermodynamics of fluorine incorporation into silica glass.
Journal of Non-Crystalline Solids,2008,354(2/9):540-545
|
CSCD被引
1
次
|
|
|
|
17.
Youngman R E. The nature of fluorine in amorphous silica.
Journal of Non-Crystalline Solids,2004,337(2):182-186
|
CSCD被引
4
次
|
|
|
|
18.
Youngman R E. Structural role of fluorine in amorphous silica.
Journal of Non-Crystalline Solids,2004,349:10-15
|
CSCD被引
4
次
|
|
|
|
19.
Stanton K. The role of fluorine in the devitrification of SiO_2·Al_2O_3·P_2O_5·CaO·CaF2glasses.
Journal of Materials Science,2000,35(8):1911-1916
|
CSCD被引
11
次
|
|
|
|
20.
Calver A. Influence of fluorine content on the crystallization behavior of apatitewollastonite glass-ceramics.
Journal of Materials Science,2004,39(7):2601-2603
|
CSCD被引
2
次
|
|
|
|
|