帮助 关于我们

返回检索结果

Perfect optical nonreciprocity in a double-cavity optomechanical system

查看参考文献57篇

Yan Xiaobo 1   Lu Helin 2   Gao Feng 3   Yang Liu 4 *  
文摘 Nonreciprocal devices are indispensable for building quantum networks and ubiquitous in modern communication technology.Here,we propose to take advantage of the interference between optomechanical interaction and linearly-coupled interaction to realize optical nonreciprocal transmission in a double-cavity optomechanical system.Particularly,we have derived essential conditions for perfect optical nonreciprocity and analysed properties of the optical nonreciprocal transmission.These results can be used to control optical transmission in quantum information processing.
来源 Frontiers of Physics ,2019,14(5):52601 【核心库】
DOI 10.1007/s11467-019-0922-3
关键词 optomechanics ; optical nonreciprocity ; nonreciprocal transmission
地址

1. College of Electronic Science,Northeast Petroleum University, Daqing, 163318  

2. Department of Physics,Yunnan Minzu University, Kunming, 650500  

3. College of Science,Shenyang Aerospace University, Shenyang, 110136  

4. College of Automation,Harbin Engineering University, Harbin, 150001

语种 英文
文献类型 研究性论文
ISSN 2095-0462
学科 物理学
基金 国家自然科学基金 ;  中国博士后科学基金 ;  Fundamental Research Funds for the Central Universities
文献收藏号 CSCD:6623055

参考文献 共 57 共3页

1.  Jalas D. What is-and what is not-an optical isolator. Nat. Photonics,2013,7(8):579 CSCD被引 44    
2.  Hogan C L. The ferromagnetic faraday effect at microwave frequencies and its applications. Bell Syst. Tech. J,1952,31(1):1 CSCD被引 2    
3.  Aplet L J. A Faraday effect optical isolator. Appl. Opt,1964,3(4):544 CSCD被引 11    
4.  Ranzani L. Graph-based analysis of nonreciprocity in coupled-mode systems. New J. Phys,2015,17(2):023024 CSCD被引 3    
5.  He B. Transmission nonreciprocity in a mutually coupled circulating structure. Phys. Rev. Lett,2018,120(20):203904 CSCD被引 8    
6.  Dong C H. Brillouin-scattering-induced transparency and non-reciprocal light storage. Nat. Commun,2015,6(1):6193 CSCD被引 31    
7.  Fang K. Photonic Aharonov-Bohm effect based on dynamic modulation. Phys. Rev. Lett,2012,108(15):153901 CSCD被引 19    
8.  Aspelmeyer M. Cavity optomechanics. Rev. Mod. Phys,2014,86(4):1391 CSCD被引 232    
9.  Hu Y W. Optomechanical sensing with on-chip microcavities. Front. Phys,2013,8(5):475 CSCD被引 12    
10.  Zhang K Y. Cavity optomechanics with cold atomic gas. Front. Phys,2011,6(3):237 CSCD被引 6    
11.  Marquardt F. Quantum theory of cavity-assisted sideband cooling of mechanical motion. Phys. Rev. Lett,2007,99(9):093902 CSCD被引 52    
12.  Wilson-Rae I. Theory of ground state cooling of a mechanical oscillator using dynamical backaction. Phys. Rev. Lett,2007,99(9):093901 CSCD被引 44    
13.  He B. Radiation pressure cooling as a quantum dynamical process. Phys. Rev. Lett,2017,118(23):233604 CSCD被引 10    
14.  Agarwal G S. Electromagnetically induced transparency in mechanical effects of light. Phys. Rev. A,2010,81:041803(R) CSCD被引 84    
15.  Weis S. Optomechanically induced transparency. Science,2010,330(6010):1520 CSCD被引 109    
16.  Dong C. Transient optomechanically induced transparency in a silica microsphere. Phys. Rev. A,2013,87(5):055802 CSCD被引 1    
17.  Liu Y C. Electromagnetically induced transparency in optical microcavities. Nanophotonics,2017,6(5):789 CSCD被引 16    
18.  Xiong H. Fundamentals and applications of optomechanically induced transparency. Appl. Phys. Rev,2018,5(3):031305 CSCD被引 20    
19.  Zhang H. Loss-induced transparency in optomechanics. Opt. Express,2018,26(19):25199 CSCD被引 8    
20.  Yan X B. Optomechanically induced amplification and perfect transparency in double-cavity optomechanics. Front. Phys,2015,10(3):104202 CSCD被引 2    
引证文献 14

1 王婧 双腔光力学系统中光学非互易 量子电子学报,2020,37(3):328-336
CSCD被引 3

2 王婧 基于三拉盖尔高斯腔的机械振子基态冷却研究 光学学报,2020,40(18):1827001
CSCD被引 2

显示所有14篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号