Perfect optical nonreciprocity in a double-cavity optomechanical system
查看参考文献57篇
文摘
|
Nonreciprocal devices are indispensable for building quantum networks and ubiquitous in modern communication technology.Here,we propose to take advantage of the interference between optomechanical interaction and linearly-coupled interaction to realize optical nonreciprocal transmission in a double-cavity optomechanical system.Particularly,we have derived essential conditions for perfect optical nonreciprocity and analysed properties of the optical nonreciprocal transmission.These results can be used to control optical transmission in quantum information processing. |
来源
|
Frontiers of Physics
,2019,14(5):52601 【核心库】
|
DOI
|
10.1007/s11467-019-0922-3
|
关键词
|
optomechanics
;
optical nonreciprocity
;
nonreciprocal transmission
|
地址
|
1.
College of Electronic Science,Northeast Petroleum University, Daqing, 163318
2.
Department of Physics,Yunnan Minzu University, Kunming, 650500
3.
College of Science,Shenyang Aerospace University, Shenyang, 110136
4.
College of Automation,Harbin Engineering University, Harbin, 150001
|
语种
|
英文 |
文献类型
|
研究性论文 |
ISSN
|
2095-0462 |
学科
|
物理学 |
基金
|
国家自然科学基金
;
中国博士后科学基金
;
Fundamental Research Funds for the Central Universities
|
文献收藏号
|
CSCD:6623055
|
参考文献 共
57
共3页
|
1.
Jalas D. What is-and what is not-an optical isolator.
Nat. Photonics,2013,7(8):579
|
CSCD被引
44
次
|
|
|
|
2.
Hogan C L. The ferromagnetic faraday effect at microwave frequencies and its applications.
Bell Syst. Tech. J,1952,31(1):1
|
CSCD被引
2
次
|
|
|
|
3.
Aplet L J. A Faraday effect optical isolator.
Appl. Opt,1964,3(4):544
|
CSCD被引
11
次
|
|
|
|
4.
Ranzani L. Graph-based analysis of nonreciprocity in coupled-mode systems.
New J. Phys,2015,17(2):023024
|
CSCD被引
3
次
|
|
|
|
5.
He B. Transmission nonreciprocity in a mutually coupled circulating structure.
Phys. Rev. Lett,2018,120(20):203904
|
CSCD被引
8
次
|
|
|
|
6.
Dong C H. Brillouin-scattering-induced transparency and non-reciprocal light storage.
Nat. Commun,2015,6(1):6193
|
CSCD被引
31
次
|
|
|
|
7.
Fang K. Photonic Aharonov-Bohm effect based on dynamic modulation.
Phys. Rev. Lett,2012,108(15):153901
|
CSCD被引
19
次
|
|
|
|
8.
Aspelmeyer M. Cavity optomechanics.
Rev. Mod. Phys,2014,86(4):1391
|
CSCD被引
232
次
|
|
|
|
9.
Hu Y W. Optomechanical sensing with on-chip microcavities.
Front. Phys,2013,8(5):475
|
CSCD被引
12
次
|
|
|
|
10.
Zhang K Y. Cavity optomechanics with cold atomic gas.
Front. Phys,2011,6(3):237
|
CSCD被引
6
次
|
|
|
|
11.
Marquardt F. Quantum theory of cavity-assisted sideband cooling of mechanical motion.
Phys. Rev. Lett,2007,99(9):093902
|
CSCD被引
52
次
|
|
|
|
12.
Wilson-Rae I. Theory of ground state cooling of a mechanical oscillator using dynamical backaction.
Phys. Rev. Lett,2007,99(9):093901
|
CSCD被引
44
次
|
|
|
|
13.
He B. Radiation pressure cooling as a quantum dynamical process.
Phys. Rev. Lett,2017,118(23):233604
|
CSCD被引
10
次
|
|
|
|
14.
Agarwal G S. Electromagnetically induced transparency in mechanical effects of light.
Phys. Rev. A,2010,81:041803(R)
|
CSCD被引
84
次
|
|
|
|
15.
Weis S. Optomechanically induced transparency.
Science,2010,330(6010):1520
|
CSCD被引
109
次
|
|
|
|
16.
Dong C. Transient optomechanically induced transparency in a silica microsphere.
Phys. Rev. A,2013,87(5):055802
|
CSCD被引
1
次
|
|
|
|
17.
Liu Y C. Electromagnetically induced transparency in optical microcavities.
Nanophotonics,2017,6(5):789
|
CSCD被引
16
次
|
|
|
|
18.
Xiong H. Fundamentals and applications of optomechanically induced transparency.
Appl. Phys. Rev,2018,5(3):031305
|
CSCD被引
20
次
|
|
|
|
19.
Zhang H. Loss-induced transparency in optomechanics.
Opt. Express,2018,26(19):25199
|
CSCD被引
8
次
|
|
|
|
20.
Yan X B. Optomechanically induced amplification and perfect transparency in double-cavity optomechanics.
Front. Phys,2015,10(3):104202
|
CSCD被引
2
次
|
|
|
|
|