Exposing Cu-rich {110} active facets in PtCu nanostars for boosting electrochemical performance toward multiple liquid fuels electrooxidation
查看参考文献63篇
文摘
In catalysis, tuning the structural composition of the metal alloy is known as an efficient way to optimize the catalytic activity. This work presents the synthesis of compositional segregated six-armed PtCu nanostars via a facile solvothermal method and their distinct composition-structure-dependent performances in electrooxidation processes. The alloy is shown to have a unique six arms with a Cu-rich dodecahedral core, mainly composed of {110} facets and exhibit superior catalytic activity toward alcohols electrooxidation compared to the hollow counterpart where Cu was selectively etched. Density functional theory (DFT) calculations suggest that the formation of hydroxyl intermediate (OH*) is crucial to detoxify CO poisoning during the electrooxidation processes. The addition of Cu is found to effectively adjust the d band location of the alloy catalyst and thus enhance the formation of *OH intermediate from water splitting, which decreases the coverage of *CO intermediate. Our work demonstrates that the unique compositional anisotropy in alloy catalyst may boost their applications in electrocatalysis and provides a methodology for the design of this type catalyst.
来源
Nano Research
,2019,12(5):1147-1153 【核心库】
DOI
10.1007/s12274-019-2367-y
关键词
element-specific
;
etching
;
crystal facet
;
PtCu nanostars
;
methanol oxidation
地址
1.
Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui University, Hefei, 230601
2.
Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055
3.
College of Civil Engineering & Mechanics, Xiangtan University, Xiangtan, 411105
4.
Center of Advanced Nanocatalysis (CAN) and Department of Chemistry, University of Science and Technology of China, Hefei, 230026
语种
英文
文献类型
研究性论文
ISSN
1998-0124
学科
物理学
基金
国家自然科学基金
;
国家教育部项目
;
the Education Department of Anhui Province
;
211 Project of Anhui University
文献收藏号
CSCD:6619171
参考文献 共
63
共4页
1.
Liu H L. Noble metal alloy complex nanostructures: Controllable synthesis and their electrochemical property.
Chem. Soc. Rev,2015,44:3056-3078
CSCD被引
40
次
2.
Zhao X. Ultrathin PtPdCu nanowires fused porous architecture with 3D molecular accessibility: An active and durable platform for methanol oxidation.
ACS Appl. Mater. Interfaces,2015,7:26333-26339
CSCD被引
8
次
3.
Ding J B. Highly open rhombic dodecahedral PtCu nanoframes.
Chem. Commun,2015,51:9722-9725
CSCD被引
14
次
4.
Du X W. Monodisperse and self-assembled Pt-Cu nanoparticles as an efficient electrocatalyst for the methanol oxidation reaction.
J. Mater. Chem. A,2016,4:1579-1585
CSCD被引
15
次
5.
Luo S P. Concave platinum-copper octopod nanoframes bounded with multiple high-index facets for efficient electrooxidation catalysis.
ACS Nano,2017,11:11946-11953
CSCD被引
17
次
6.
Rossmeisl J. Bifunctional anode catalysts for direct methanol fuel cells.
Energy Environ. Sci,2012,5:8335-8342
CSCD被引
3
次
7.
Cui C H. Compositional segregation in shaped Pt alloy nanoparticles and their structural behaviour during electrocatalysis.
Nat. Mater,2013,12:765-771
CSCD被引
69
次
8.
Maya-Cornejo J. PtCu catalyst for the electro-oxidation of ethanol in an alkaline direct alcohol fuel cell.
Int. J. Hydrogen Energy,2017,42:27919-27928
CSCD被引
4
次
9.
Chen L. Improved ethanol electrooxidation performance by shortening Pd-Ni active site distance in Pd-Ni-P nanocatalysts.
Nat. Commun,2017,8:14136
CSCD被引
50
次
10.
Jiang R. Edge-site engineering of atomically dispersed Fe–N4 by selective C–N bond cleavage for enhanced oxygen reduction reaction activities.
J. Am. Chem. Soc,2018,140:11594-11598
CSCD被引
81
次
11.
Seh Z W. Combining theory and experiment in electrocatalysis: Insights into materials design.
Science,2017,355:eaad4998
CSCD被引
734
次
12.
Stamenkovic V R. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces.
Nat. Mater,2007,6:241-247
CSCD被引
169
次
13.
Kang Y J. Shaping electrocatalysis through tailored nanomaterials.
Nano Today,2016,11:587-600
CSCD被引
5
次
14.
Zhang Z C. Crystal phase and architecture engineering of lotus-thalamus-shaped Pt-Ni anisotropic superstructures for highly efficient electrochemical hydrogen evolution.
Adv. Mater,2018,30:1801741
CSCD被引
10
次
15.
Cao Z M. Platinum-nickel alloy excavated nano-multipods with hexagonal close-packed structure and superior activity towards hydrogen evolution reaction.
Nat. Commun,2017,8:15131
CSCD被引
15
次
16.
Wang P T. Phase and interface engineering of platinum-nickel nanowires for efficient electrochemical hydrogen evolution.
Angew. Chem., Int. Ed,2016,55:12859-12863
CSCD被引
14
次
17.
Wang W Y. Pt-Ni nanodendrites with high hydrogenation activity.
Chem. Commun,2013,49:2903-2905
CSCD被引
5
次
18.
Suntivich J. Surface composition tuning of Au-Pt bimetallic nanoparticles for enhanced carbon monoxide and methanol electro-oxidation.
J. Am. Chem. Soc,2013,135:7985-7991
CSCD被引
20
次
19.
Pei J J. Ultrathin Pt–Zn nanowires: High-performance catalysts for electrooxidation of methanol and formic acid.
ACS Sustainable Chem. Eng,2018,6:77-81
CSCD被引
2
次
20.
Xia B Y. One-pot synthesis of cubic PtCu3 nanocages with enhanced electrocatalytic activity for the methanol oxidation reaction.
J. Am. Chem. Soc,2012,134:13934-13937
CSCD被引
53
次
引证文献
4
篇
1
He Caihong
Screwdriver-like Pd-Ag heterostructures formed via selective deposition of Ag on Pd nanowires as efficient photocatalysts for solvent-free aerobic oxidation of toluene
Nano Research,2020,13(3):646-652
CSCD被引
4
次
2
Zhu Enbo
Enhancement of oxygen reduction reaction activity by grain boundaries in platinum nanostructures
Nano Research,2020,13(12):3310-3314
CSCD被引
4
次
显示所有4篇文献