NiCrFe焊缝金属的晶界形貌和晶界MC碳化物对局部变形行为的影响
Effect of Grain Boundary Morphology and MC on Plastic Deformation Behavior of NiCrFeWeld Metal:Crystal Plasticity Finite Element Analysis
查看参考文献32篇
文摘
|
采用晶体塑性有限元方法研究了NiCrFe焊缝金属中晶界形貌和晶界MC碳化物对局部变形行为的影响。结果表明,试样中的弯曲晶界促进其周围基体中滑移系的开动,进而促进塑性变形均匀分布。由于晶界碳化物MC与基体的临界分剪切应力和硬化行为的差异显著,碳化物承担较高的应力而发生较小的塑性变形。碳化物与基体界面处不连续的应力分布加剧了二者变形的不协调性,使裂纹在MC与基体界面处萌生。焊缝金属中的弯曲晶界和晶界碳化物MC,对高温失塑裂纹的作用相反。为了降低高温失塑的影响,在工程实践中应该在尽量减少MC的情况下得到弯曲晶界。 |
其他语种文摘
|
Effect of grain boundary morphology and carbide precipitate on local heterogeneous plastic deformation of a NiCrFe weld metal were investigated by the crystal plasticity finite element method. Results show that the plastic deformation behavior is more homogeneous for the sample with tortuous grain boundaries rather than those with straight grain boundaries, since the tortuous grain boundary can promote the activation of slip systems around it more easily. Owning to the significant differences in the critical resolved shear stress and hardening behavior between the MC carbide and matrix, the carbide has much higher stress and lower strain compared with the matrix. The discontinuous stress distribution at the interface between the carbide and matrix may induce fracture initiation during the deformation. The tortuous grain boundaries and MC precipitates have the opposite effect on the ductility, dipping and cracking of the weld metal. Therefore, it should be tried to obtain the weld metal with tortuous grain boundaries while minimizing MC precipitates for engineering application. |
来源
|
材料研究学报
,2019,33(11):801-808 【核心库】
|
DOI
|
10.11901/1005.3093.2019.094
|
关键词
|
金属材料
;
高温失塑裂纹
;
晶体塑性
;
晶界形态
;
MC
|
地址
|
1.
中国科学院金属研究所, 中国科学院核用材料与安全评价重点实验室, 沈阳, 110016
2.
中国科学技术大学材料科学与工程学院, 沈阳, 110016
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1005-3093 |
学科
|
金属学与金属工艺 |
基金
|
中科院重点部署项目
;
江苏省重点研发计划
|
文献收藏号
|
CSCD:6617555
|
参考文献 共
32
共2页
|
1.
Qin R. Investigation on the microstructure and ductility-dip cracking susceptibility of the butt weld welded with ENiCrFe-7 nickel-base alloy-covered electrodes.
Metal. Mater. Trans,2014,46(A):1227
|
CSCD被引
1
次
|
|
|
|
2.
Mo W. Effects of M23C6 on the high-temperature performance of Ni-based welding material NiCrFe-7.
Metal. Mater. Trans. A,2014,45:5114
|
CSCD被引
8
次
|
|
|
|
3.
Mo W. Effects of filler metal composition on the microstructure and mechanical properties for ER NiCrFe-7 multipass weldments.
Mater. Sci. Eng. A,2013,582:326
|
CSCD被引
13
次
|
|
|
|
4.
Kadoi K. New measurement technique of ductility curve for ductility-dip cracking susceptibility in Alloy 690 welds.
Mater. Sci. Eng. A,2016,672:59
|
CSCD被引
3
次
|
|
|
|
5.
Mo W. Effects of boron on the microstructure, ductility-dip-cracking, and tensile properties for NiCrFe-7 weld metal.
J. Mater. Sci. Technol,2015,31(12):1258
|
CSCD被引
2
次
|
|
|
|
6.
Zhang X. Effect of Nb and Mo on the microstructure, mechanical properties and ductility-dip cracking of Ni-Cr-Fe weld metals.
Acta Metall. Sin., (Engl. Let.),2016,29(10):928
|
CSCD被引
1
次
|
|
|
|
7.
Wei X. Effect of local texture and precipitation on the ductility dip cracking of ERNiCrFe-7A Ni-based overlay.
Mater. Des,2016,110:90
|
CSCD被引
7
次
|
|
|
|
8.
莫文林. Nb含量对NiCrFe-7焊缝金属组织、缺陷和力学性能的影响.
金属学报,2015,51:230
|
CSCD被引
4
次
|
|
|
|
9.
Ramirez A J. High temperature behavior of Ni-base weld metal Part I. Ductility and microstructural characterization.
Mater. Sci. Eng. A,2004,380:259
|
CSCD被引
23
次
|
|
|
|
10.
Nishimoto K. Microcracking in multipass weld metal of alloy 690 Part 1-Microcracking susceptibility in reheated weld metal.
Sci. Technol.Weld. Join,2013,11(4):455
|
CSCD被引
2
次
|
|
|
|
11.
Collins M G. An investigation of ductility dip cracking in Nickel-based filler materials-Part I.
Weld. Res,2003:288
|
CSCD被引
1
次
|
|
|
|
12.
Lee D J. Contribution of precipitate on migrated grain boundaries to ductility-dip cracking in Alloy 625 weld joints.
Metal. Mater. Int,2010,16(5):813
|
CSCD被引
5
次
|
|
|
|
13.
Han K. Effect of Ni on the hot ductility and hot cracking susceptibility of high Mn austenitic cast steel.
Mater. Sci. Eng. A,2014,618:295
|
CSCD被引
4
次
|
|
|
|
14.
Jang A Y. Effect of Cr/Ni equivalent ratio on ductility-dip cracking in AISI 316L weld metals.
Mater. Des,2011,32(1):371
|
CSCD被引
2
次
|
|
|
|
15.
Ramirez A J. High temperature behavior of Ni-base weld metal Part II, Insight into the mechanism for ductility dip cracking.
Mater. Sci. Eng. A,2004,380:245
|
CSCD被引
27
次
|
|
|
|
16.
Chen J Q. Effect of grain boundary behaviour on ductility dip cracking mechanism.
Mater. Sci. Tech,2013,30(10):1189
|
CSCD被引
2
次
|
|
|
|
17.
Collins M G. An investigation of ductility dip cracking in nickel-based weld metals, Part III.
Weld Res,2004,83:39
|
CSCD被引
1
次
|
|
|
|
18.
Torres E A. Development of hightemperature strain instrumentation for in situ SEM evaluation of ductility dip cracking.
J. Micro,2014,254(3):157
|
CSCD被引
6
次
|
|
|
|
19.
Qian D. Statistical study of ductility-dip cracking induced plastic deformation in polycrystalline laser 3D printed Ni-based superalloy.
Sci. Rep,2017,7(1):2859
|
CSCD被引
4
次
|
|
|
|
20.
Roters F. Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: Theory, experiments, applications.
Acta Mater,2010,58:1152
|
CSCD被引
97
次
|
|
|
|
|