Dynamic design of a nonlinear energy sink with NiTiNOL-steel wire ropes based on nonlinear output frequency response functions
查看参考文献57篇
文摘
|
A novel vibration isolation device called the nonlinear energy sink (NES)with NiTiNOL-steel wire ropes (NiTi-ST)is applied to a whole-spacecraft system. The NiTi-ST is used to describe the damping of the NES, which is coupled with the modified Bouc-Wen model of hysteresis. The NES with NiTi-ST vibration reduction principle uses the irreversibility of targeted energy transfer (TET)to concentrate the energy locally on the nonlinear oscillator, and then dissipates it through damping in the NES with NiTi-ST. The generalized vibration transmissibility, obtained by the root mean square treatment of the harmonic response of the nonlinear output frequency response functions (NOFRFs),is first used as the evaluation index to analyze the whole-spacecraft system in the future. An optimization analysis of the impact of system responses is performed using different parameters of NES with NiTi-ST based on the transmissibility of NOFRFs. Finally, the effects of vibration suppression by varying the parameters of NiTi-ST are analyzed from the perspective of energy absorption. The results indicate that NES with NiTi-ST can reduce excessive vibration of the whole-spacecraft system, without changing its natural frequency. Moreover, the NES with NiTi-ST can be directly used in practical engineering applications. |
来源
|
Applied Mathematics and Mechanics. English Edition
,2019,40(12):1791-1804 【核心库】
|
DOI
|
10.1007/s10483-019-2548-9
|
关键词
|
nonlinear energy sink (NES)
;
vibration isolation
;
NiTiNOL-steel wire rope (NiTi-ST)
;
nonlinear output frequency response function (NOFRF)
;
root mean square
;
transmissibility
|
地址
|
1.
College of Aerospace Engineering, Shenyang Aerospace University, Shenyang, 110136
2.
Department of Automatic Control and Systems Engineering, Sheffield University, U. K., Sheffield, S1 3JD
3.
Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai, 200072
4.
School of Mechanics and Engineering Science, Shanghai University, Shanghai, 200444
5.
Shanghai University, Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai, 200072
|
语种
|
英文 |
文献类型
|
研究性论文 |
ISSN
|
0253-4827 |
学科
|
力学 |
基金
|
国家自然科学基金
;
the Scientific Research Fund of Liaoning Provincial Education Department
;
the Liaoning Revital- ization Talent Program
;
the Training Project of Liaoning Higher Education Institutions in Domestic and Overseas
|
文献收藏号
|
CSCD:6615287
|
参考文献 共
57
共3页
|
1.
Remedia M. Modelling the effect of electrical harness on microvibration response of structures.
Acta Astronautica,2015,109:88-102
|
CSCD被引
6
次
|
|
|
|
2.
Wilke P S. Payload isolation system for launch vehicles.
Proceedings of SPIE-The International Society for Optical Engineering, 3045,1997:20-30
|
CSCD被引
1
次
|
|
|
|
3.
Johnson C D. Protecting satellites from the dynamics of the launch environment.
AIAA Space 2003 Conference and Exposition,2006
|
CSCD被引
1
次
|
|
|
|
4.
Wang X. Transient vibration control using nonlinear convergence active vibration absorber for impulse excitation.
Mechanical Systems and Signal Processing,2019,117:425-436
|
CSCD被引
7
次
|
|
|
|
5.
Yang X D. Elliptic motions and control of rotors suspending in active magnetic bearings.
Journal of Computational and Nonlinear Dynamics,2016,11:5
|
CSCD被引
1
次
|
|
|
|
6.
Salvi J. Optimum tuning of passive tuned mass dampers for the mitigation of pulse-like responses.
Journal of Vibration and Acoustics,2018,140(6):061014
|
CSCD被引
1
次
|
|
|
|
7.
Takezawa A. Layout optimization methodology of piezoelectric transducers in energy-recycling semi-active vibration control systems.
Journal of Sound and Vibration,2014,333:327-344
|
CSCD被引
6
次
|
|
|
|
8.
Guo Z K. Dynamic analysis, active and passive vibration control of double-layer hourglass lattice truss structures.
Journal of Sandwich Structures and Materials,2018
|
CSCD被引
1
次
|
|
|
|
9.
Ding H. Dynamic stiffness method for free vibration of an axially moving beam with generalized boundary conditions.
Applied Mathematics and Mechanics (English Edition),2019,40(7):911-924
|
CSCD被引
5
次
|
|
|
|
10.
Lu Z Q. Nonlinear energy harvesting based on a modified snap-through mechanism.
Applied Mathematics and Mechanics (English Edition),2018,40(1):167-180
|
CSCD被引
1
次
|
|
|
|
11.
Liu C C. Nonlinear vibration energy harvesting with adjustable stiffness, damping and inertia.
Nonlinear Dynamics,2017,88(1):79-95
|
CSCD被引
4
次
|
|
|
|
12.
Siami A. Parameter optimization of an inerter-based isolator for passive vibration control of Michelangelo's Rondanini Pieta.
Mechanical Systems and Signal Processing,2018,98:667-683
|
CSCD被引
2
次
|
|
|
|
13.
Ding H. Steady-state responses of a belt-drive dynamical system under dual excitations.
Acta Mechanica Sinica,2016,32(1):156-169
|
CSCD被引
8
次
|
|
|
|
14.
Ding H. Primary resonance of traveling viscoelastic beam under internal resonance.
Applied Mathematics and Mechanics (English Edition),2017,38(1):1-14
|
CSCD被引
22
次
|
|
|
|
15.
Sun L L. Evaluation of the performance of a passive-active vibration isolation system.
Mechanical Systems and Signal Processing,2015,50/51:480-497
|
CSCD被引
2
次
|
|
|
|
16.
Ding H. Effect of one-way clutch on the nonlinear vibration of belt-drive systems with a continuous belt model.
Journal of Sound and Vibration,2013,332(24):6472-6487
|
CSCD被引
8
次
|
|
|
|
17.
Yang K. Nonlinear energy sink for whole-spacecraft vibration reduction.
Journal of Vibration and Acoustics,2017,139(2):021011
|
CSCD被引
27
次
|
|
|
|
18.
Vakakis A F. Inducing passive nonlinear energy sinks in vibrating systems.
Journal of Vibration and Acoustics,2001,123(3):324-332
|
CSCD被引
47
次
|
|
|
|
19.
Vakakis A F. Shock isolation through the use of nonlinear energy sinks.
Journal of Vibration and Control,2003,9(1/2):79-93
|
CSCD被引
3
次
|
|
|
|
20.
Motato E. Targeted energy transfer and modal energy redistribution in automotive drivetrains.
Nonlinear Dynamics,2016,87(1):169-190
|
CSCD被引
2
次
|
|
|
|
|