帮助 关于我们

返回检索结果

Experimental Study on Quantitative Detection of Oil Slick Thickness Based on Laser-Induced Fluorescence
基于激光诱导荧光的溢油厚度定量检测实验研究

查看参考文献15篇

Chen Yunan 1,2,3   Yang Ruifang 1,3   Zhao Nanjing 1,3 *   Zhu Wei 1,2,3   Huang Yao 1,2,3   Zhang Ruiqi 1,2,3   Chen Xiaowei 1,2,4  
文摘 Quantitative detection of oil slick thickness in the ocean is an essential basis to achieve an accurate estimate of oil spills and provides primary data for the development of oil pollution emergency response.In this paper,we use diesel(0# diesel),motor oil(Mobil motor oil 20w-40),Lubricants(Shell Helix 15w-40,Shell Helix 10w-40,Shell Helix 5w-40)as the research objects,using laser-induced fluorescence(LIF)obtains the spectra of materials.The oil film thickness-fluorescence intensity calibration curves are established,and the detection limits of five kinds of oils are calculated.The accuracy of the quantitative detection of different oil film thicknesses in different water is analyzed.The results show that the fluorescence spectra of 0#diesel and Mobil motor oil 20w-40are significantly different from those lubricants.The fluorescence peak of diesel is at 326nm,and its FWHM is 60nm.Mobil motor oil 20w-40has three fluorescence peaks at 360nm/375nm/390nm,and the FWHM is about 100nm.The fluorescence spectra of the three lubricants(such as Shell Helix 15w-40,Shell Helix 10w-40,Shell Helix 5w-40)overlap significantly,and the fluorescence peaks are located at 334,344,and 343nm,respectively.With the increase of oil slick thickness,the fluorescence intensity of the five kinds of oil films is rising.The calibration curves of oil slicks have good correlation,and the correlation coefficients(r)are 0.997 8,0.997 9,0.996 4,0.997 8,and 0.996 0,respectively.The detection limits are 0.03,0.02,0.02,0.03and 0.05μm.It can be seen that the average relative errors of quantitative detection of five kinds of oil films in different water are less than 14%,and the average relative standard deviations are not greater than 10%.The results can be used to measure thin oil films and provide a technical means for on-line monitoring of oil film thickness at sea.
其他语种文摘 海上溢油油膜厚度的定量检测是实现溢油量准确估计的重要依据和手段,为制定石油污染应急响应提供了基础数据。本文基于激光诱导荧光(LIF)的方法以柴油(0# diesel)、机油(Mobil motor oil 20w-40)、润滑油(Shell Helix 15w-40,Shell Helix 10w-40,Shell Helix 5w-40)为研究对象,重点分析了油膜厚度-荧光发射强度关系,检出限以及油膜厚度在不同水体中定量检测的准确性。结果表明:0#柴油和美孚机油20w- 60的荧光光谱特征与润滑油的光谱特征有明显不同,柴油的荧光峰位于326nm其FWHM为60nm,美孚机油20w-60则具有三个荧光峰分别位于360nm/375nm/390nm其FWHM为100nm。三种润滑油(壳牌润滑油15w-40、壳牌润滑油10w-40、壳牌润滑油5w-40)的荧光光谱重叠明显,荧光峰分别位于334,344和343nm且FWHM分别为75,45和50nm。5种油膜的荧光强度均随油膜厚度的增加而增加,校正曲线的相关性分别为0.997 8,0.997 9,0.996 4,0.997 8和0.996 0,均具有较好的相关性,5种油膜检出限分别为0.03,0.02,0.02,0.03和0.05μm,0#柴油在合成海水A和B中的平均相对误差为5.04%和8.73%,平均相对标准偏差分别为4.37%和8.36%,美孚机油20w-40在合成海水A和B中的平均相对误差为7.99%和9.97%,平均相对标准偏差为4.78%和6.23%。壳牌润滑油15w-40在合成海水A和B中的平均相对误差为8.54%和13.69%,相对标准偏差为5.05%和9.08%。壳牌润滑油10w-40在合成海水A和B中的平均相对误差为6.33%和12.38%,平均相对标准偏差为2.85%和7.92%。壳牌润滑油5w-40在合成海水A和B中的平均相对误差为4.28%和11.57%,平均相对标准偏差为3.56%和7.73%。可见5种油膜在不同水体中定量检测的平均相对误差均小于14%,平均相对标准偏差均小于10%,研究结果可以实现对薄油膜的测量,为海上油膜厚度的在线监测提供了技术手段。
来源 光谱学与光谱分析 ,2019,39(11):3646-3652 【核心库】
DOI 10.3964/j.issn.1000-0593(2019)11-3646-07
关键词 Laser-induced fluorescence ; Oil slick thickness ; Fluorescence spectra ; Online monitoring
地址

1. Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Key Laboratory of Environmental Optics and Technology,Chinese Academy of Sciences, Hefei, 230031  

2. University of Science and Technology of China, Hefei, 230026  

3. Anhui Key Laboratory of Optical Monitoring Technology for Environment, Anhui Key Laboratory of Optical Monitoring Technology for Environment, Hefei, 230031  

4. Key Laboratory of Optical Monitoring Technology for Environment, Hefei, 230031

语种 英文
文献类型 研究性论文
ISSN 1000-0593
学科 化学
基金 National Key R&D Program of China ;  国家自然科学基金 ;  安徽省自然科学基金 ;  Anhui Key Research and Development Plan Project ;  Anhui Province Science and Technology Major Project
文献收藏号 CSCD:6607130

参考文献 共 15 共1页

1.  Fingas M. Environment Canada,2012:617 被引 1    
2.  Myasoedov A. In 2nd International Conference on Remote Sensing,Environment and Transportation Engineering, RSETE Proceedings,2012 被引 1    
3.  Cong L. Proceedings of the IEEE Southwest Symposium on Image Analysis and Interpretation,2012:213 被引 1    
4.  Shih W C. Opt. Lett,2008(24):3019 被引 1    
5.  Pinel N. IGARSS,2009,2(2):85 被引 1    
6.  Cai Guoyin. Pro.of the Geoscience and Remote Sensing Symposium,2007:898 被引 1    
7.  Yin D. Proc. SPIE,2010:7825 被引 1    
8.  Merv Fingas. Marine Pollution Bulletin,2014(83):9 被引 1    
9.  Lu Y. Opt. Exp,2012,20(22):24496 被引 3    
10.  Wu Di. Journal of Tianjin University,2013,46(11):998 被引 1    
11.  Brown Carl E. Marine Pollution Bulletin,2003(47):485 被引 1    
12.  Li Xihua. Nanotechnology and Precision Engineering,2016,14(2):106 被引 2    
13.  Brown C E. Oil Spill Sci. Technol,2011:171 被引 2    
14.  Sarma A K. Energy Fuels,2006,20(2):783 被引 2    
15.  Wu Xiaodan. Marine Engineering,2011,29(4):92 被引 1    
引证文献 5

1 张晓丹 海面溢油水包油乳化液探测参数的BRRDF仿真研究 光学学报,2020,40(17):1701001
被引 0 次

2 谢贝贝 基于LIF海面溢油平坦厚油膜区域边缘厚度评估方法研究 计量学报,2021,42(5):564-569
被引 3

显示所有5篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号