锂离子电池高镍三元材料的研究进展
Research progress in nickel-rich ternary materials for lithium-ion batteries
查看参考文献55篇
文摘
|
用于锂离子电池的高镍三元材料由于成本低、能量密度高、可逆容量高、环境友好等优点,是现在以及未来车用动力电池首选正极材料。本文在综述了高镍三元材料的晶体结构特性和电化学特性的基础上,介绍了国内外主要制备方法、掺杂以及包覆等改性措施,重点讨论了不同种类包覆材料对高镍三元倍率性能、循环性能和高温稳定性能的影响。最后,针对高镍三元电解液、安全性、压实密度及循环寿命等问题进行分析与展望。 |
其他语种文摘
|
Nickel-rich ternary materials for lithium ion batteries are the preferred cathode materials for automotive power batteries at present and in the future,due to their low cost,high energy density, high reversible capacity and environmental friendliness.On the basis of reviewing the crystal structure and electrochemical properties of nickel-rich ternary materials,the main preparation methods at home and abroad,modification methods such as doping,coating and others were introduced.Meanwhile, the effect of different kinds of coating materials on rate performance,cycling performance and good thermal stability of nickel-rich ternary was discussed in details.Finally,the issues about nickel-rich ternary electrolyte solution,safety,compaction density and cycle life were analyzed and prospected. |
来源
|
材料工程
,2019,47(10):1-9 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2018.001301
|
关键词
|
锂离子电池
;
高镍三元材料
;
材料改性
;
循环性能
|
地址
|
1.
湖北工业大学, 太阳能高效利用湖北省协同创新中心, 武汉, 430068
2.
催化材料湖北省协同创新中心, 催化材料湖北省协同创新中心, 武汉, 430068
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1001-4381 |
学科
|
电工技术 |
基金
|
湖北省技术创新重大专项
;
国家重点研发计划项目
;
太阳能高效利用湖北省协同创新中心开放基金项目
;
深圳市创客资助项目
|
文献收藏号
|
CSCD:6592195
|
参考文献 共
55
共3页
|
1.
袁琦. 锂离子电池正极材料铁掺杂V_6O_(13)的制备及电化学性能.
材料工程,2018,46(1):106-113
|
CSCD被引
5
次
|
|
|
|
2.
Manthiram A. A perspective on nickel-rich layered oxide cathodes for lithium-ion batteries.
Energy Storage Materials,2017(6):125-139
|
CSCD被引
41
次
|
|
|
|
3.
董鹏. 纳米磷酸铁包覆锂离子电池正极材料LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2的制备及其电化学性能.
材料工程,2017,45(11):49-57
|
CSCD被引
6
次
|
|
|
|
4.
Riekehr L. Effect of pristine nanostructure on first cycle electrochemical characteristics of lithium-rich lithium-nickel-cobalt-manganese-oxide cathode ceramics for lithium ion batteries.
Journal of Power Sources,2016,306:135-137
|
CSCD被引
3
次
|
|
|
|
5.
Ding Y. A short review on layered LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2positive electrode material for lithium-ion batteries.
Energy Procedia,2017,105:2941-2952
|
CSCD被引
8
次
|
|
|
|
6.
Zheng J. Role of Mn content on the electrochemical properties of nickel-rich layered LiNi0.8-x Co_(0.1)Mn_(0.1+x) O_2 (0.0≤x≤0.08)cathodes for lithium-ion batteries.
ACS Appl Mater Interfaces,2015,7(12):6926-6934
|
CSCD被引
14
次
|
|
|
|
7.
Sun H H. Control of electrochemical properties of nickel-rich layered cathode materials for lithium ion batteries by variation of the manganese to cobalt ratio.
Journal of Power Sources,2015,275:877-833
|
CSCD被引
12
次
|
|
|
|
8.
Gong J. Thermal analysis of nickel cobalt lithium manganese with varying nickel content used for lithium ion batteries.
Thermochimica Acta,2017,655:176-180
|
CSCD被引
7
次
|
|
|
|
9.
Pan C C. Influences of transition metal on structural and electrochemical properties of Li [Ni_xCo_yMn_z]O_2(0.6≤x≤0.8)cathode materials for lithium-ion batteries.
Transactions of Nonferrous Metals Society of China,2016,26(5):1396-1402
|
CSCD被引
6
次
|
|
|
|
10.
Zhou P. SiO_2 -coated LiNi_(0.915) Co_(0.075)Al_(0.01)O_2cathode material for rechargeable Li-ion batteries.
Nanoscale,2016,8(46):19263-19269
|
CSCD被引
20
次
|
|
|
|
11.
De B L. Between scylla and charybdis:balancing among structural stability and energy density of layered NCM cathode materials for advanced lithium-ion batteries.
The Journal of Physical Chemistry C,2017,121(47):26163-26171
|
CSCD被引
1
次
|
|
|
|
12.
Ishidzu K. Lattice volume change during charge/discharge reaction and cycle performance of Li [Ni_xCo_yMn_z]O_2.
Solid State Ionics,2016,288:176-179
|
CSCD被引
10
次
|
|
|
|
13.
Zhang Q. Pre-oxidizing the precursors of Nickel-rich cathode materials to regulate their Li+/Ni 2+ cation ordering towards cyclability improvements.
Journal of Power Sources,2018,396:734-741
|
CSCD被引
13
次
|
|
|
|
14.
Wu F. Effect of Ni 2+ content on lithium/nickel disorder for Ni-rich cathode materials.
ACS Appl Mater Interfaces,2015,7(14):7702-7708
|
CSCD被引
39
次
|
|
|
|
15.
Meng K. Enhanced cycling stability of LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2by reducing surface oxygen defects.
Electrochimica Acta,2017,234:99-107
|
CSCD被引
8
次
|
|
|
|
16.
Sun H H. Impact of microcrack generation and surface degradation on a Nickel-rich layered Li[Ni_(0.9)Co_(0.05) Mn_(0.05)]O_2cathode for lithium-ion batteries.
Chemistry of Materials,2017,29(19):8486-8493
|
CSCD被引
32
次
|
|
|
|
17.
Xiao Z. Synthesis of high-capacity LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2 cathode by transition metal acetates.
Transactions of Nonferrous Metals Society of China,2015,25(5):1568-1574
|
CSCD被引
9
次
|
|
|
|
18.
Wang L. Single-crystal LiNi_(0.6)Co_(0.2) Mn_(0.2)O_2 as high performance cathode materials for Li-ion batteries.
Journal of Alloys and Compounds,2016,674:360-367
|
CSCD被引
16
次
|
|
|
|
19.
Lu H. High capacity Li [Ni_(0.8)Co_(0.1)Mn_(0.1)]O_2synthesized by sol-gel and co-precipitation methods as cathode materials for lithium-ion batteries.
Solid State Ionics,2013,249/250:105-111
|
CSCD被引
16
次
|
|
|
|
20.
Liang L. Co-precipitation synthesis of Ni_(0.6)Co_(0.2)Mn_(0.2)(OH)_2 precursor and characterization of LiNi_(0.6) Co_(0.2)Mn_(0.2)O_2cathode material for secondary lithium batteries.
Electrochimica Acta,2014,130:82-89
|
CSCD被引
31
次
|
|
|
|
|