药物成瘾记忆的神经生物机制及临床干预方法
Neurobiological Mechanism of Drug-associated Memories and Its Clinic Intervention
查看参考文献132篇
文摘
|
药物成瘾者戒断后的持久复吸是治疗药物成瘾的难点.成瘾者出现持续复吸的重要原因是由于成瘾记忆的长期存在.成瘾物质的长期反复使用导致前额叶-边缘多巴胺系统结构和功能的适应性改变,这种改变是成瘾记忆形成的神经基础.本文从学习记忆的角度来理解成瘾形成,介绍了成瘾记忆的初始形成阶段、习惯化阶段和成瘾行为维持阶段及其相应的神经基础.回顾了近年来成瘾记忆的临床干预方法,包括消退干预方法、增强消退干预的多情境干预方法,以及直接干预消除成瘾记忆的记忆再巩固干预方法,并总结了虚拟现实、神经调控技术在成瘾记忆干预中的应用.对记忆再巩固干预方法与虚拟现实、神经调控技术相结合干预成瘾记忆进行展望,为药物成瘾的临床干预和治疗提供了新方法、新思路. |
其他语种文摘
|
Relapse behavior after long-term abstinence is the key problem of addiction treatment.A major factor to induce relapse is the persistence of maladaptive drug-associated memories.Persistent changes in structure and function of prefrontal cortex-mesolimbic dopamine system caused by chronic drug abusing,lead to the formation of pathological drug-associated memories.This article reviews addiction with a focus on how it can be conceptualised as a disorder of maladaptive memory,considering the neural basis of drug-associated memories during the initial phase,the habituation phase and the maintenance phase of addictive behavior.The present review summarizes the clinical intervention methods of drug-associated memories in recent years including extinction training,extinction in multiple contexts to facilitate extinction and reconsolidation intervention to disrupt drug-associated memories directly,and the application of virtual reality technology and neuromodulation methods in addiction intervention.The intervention methods combined memory reconsolidation with virtual reality technology or neuromodulation methods are prospected to target drug-associated memories,providing new methods and new ideas to treat addiction in future clinical researches. |
来源
|
生物化学与生物物理进展
,2019,46(10):941-951 【核心库】
|
DOI
|
10.16476/j.pibb.2019.0079
|
关键词
|
成瘾记忆
;
神经生物机制
;
消退干预
;
记忆再巩固干预
;
虚拟现实
;
神经调控
|
地址
|
1.
中国科学院心理研究所, 中国科学院心理健康重点实验室, 北京, 100101
2.
中国科学院大学心理系, 北京, 100049
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-3282 |
学科
|
社会科学总论 |
基金
|
国家重点研发计划
;
国家自然科学基金
;
中国科学院心理健康重点实验室基金资助项目
|
文献收藏号
|
CSCD:6591128
|
参考文献 共
132
共7页
|
1.
Fuchs R A. The role of the dorsomedial prefrontal cortex, basolateral amygdala, and dorsal hippocampus in contextual reinstatement of cocaine seeking in rats.
Neuropsychopharmacology,2005,30(2):296-309
|
CSCD被引
6
次
|
|
|
|
2.
Preller K H. Sustained incentive value of heroin-related cues in short-and long-term abstinent heroin users.
European Neuropsychopharmacology,2013,23(10):1270-1279
|
CSCD被引
5
次
|
|
|
|
3.
Berke J D. Addiction, dopamine, and the molecular mechanisms of memory.
Neuron,2000,25(3):515-532
|
CSCD被引
51
次
|
|
|
|
4.
Hyman S E. Addiction and the brain: the neurobiology of compulsion and its persistence.
Nature Reviews Neuroscience,2001,2(10):695-703
|
CSCD被引
42
次
|
|
|
|
5.
Hyman S E. Neural mechanisms of addiction: the role of reward-related learning and memory.
Annual Review of Neuroscience,2006,29:565-598
|
CSCD被引
38
次
|
|
|
|
6.
Robbins T W. Limbic-striatal memory systems and drug addiction.
Neurobiology of Learning & Memory,2002,78(3):625-636
|
CSCD被引
2
次
|
|
|
|
7.
Luscher C. Drug-evoked synaptic plasticity in addiction: from molecular changes to circuit remodeling.
Neuron,2011,69(4):650-663
|
CSCD被引
28
次
|
|
|
|
8.
Pierce R C. The mesolimbic dopamine system: the final common pathway for the reinforcing effect of drugs of abuse?.
Neuroscience & Biobehavioral Reviews,2006,30(2):215-238
|
CSCD被引
17
次
|
|
|
|
9.
Wise R A. Dopamine, learning and motivation.
Nature Reviews Neuroscience,2004,5(6):483-494
|
CSCD被引
36
次
|
|
|
|
10.
肖琳. 成瘾行为形成过程中学习记忆的参与及其相关的脑机制.
中国神经科学杂志,2003,19(1):50-53
|
CSCD被引
7
次
|
|
|
|
11.
Thomas M J. Neuroplasticity in the mesolimbic dopamine system and cocaine addiction.
British Journal of Pharmacology,2010,154(2):327-342
|
CSCD被引
6
次
|
|
|
|
12.
Styliani V. Repeated administration of the GABA B receptor positive modulator BHF177 decreased nicotine self-administration, and acute administration decreased cue-induced reinstatement of nicotine seeking in rats.
Psychopharmacology,2011,215(1):117-128
|
CSCD被引
1
次
|
|
|
|
13.
Stuber G D. Reward-predictive cues enhance excitatory synaptic strength onto midbrain dopamine neurons.
Science,2008,321(5896):1690-1692
|
CSCD被引
1
次
|
|
|
|
14.
Di Chiara G. Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats.
Proc Natl Acad Sci USA,1988,85(14):5274-5278
|
CSCD被引
14
次
|
|
|
|
15.
Drevets W C. Amphetamine-induced dopamine release in human ventral striatum correlates with euphoria.
Biological Psychiatry,2001,49(2):81-96
|
CSCD被引
3
次
|
|
|
|
16.
Hellemans K G C. Disrupting reconsolidation of conditioned withdrawal memories in the basolateral amygdala reduces suppression of heroin seeking in rats.
Journal of Neuroscience,2006,26(49):12694-12699
|
CSCD被引
2
次
|
|
|
|
17.
Koob G F. Plasticity of reward neurocircuitry and the 'dark side' of drug addiction.
Nature Neuroscience,2005,8(11):1442-1444
|
CSCD被引
11
次
|
|
|
|
18.
Volkow N D. The addicted human brain: insights from imaging studies.
Journal of Clinical Investigation,2003,111(10):1444-1451
|
CSCD被引
30
次
|
|
|
|
19.
Goldberg S R. Aversive properties of nalorphine and naloxone in morphine-dependent rhesus monkeys.
Journal of Pharmacology & Experimental Therapeutics,1971,179(2):268-276
|
CSCD被引
2
次
|
|
|
|
20.
Kenny P J. Conditioned withdrawal drives heroin consumption and decreases reward sensitivity.
Journal of Neuroscience,2006,26(22):5894-5900
|
CSCD被引
5
次
|
|
|
|
|