层状金属结构材料原子尺度界面结构与性能
Atomistic scale interfacial structure and properties of layered metal structural materials
查看参考文献43篇
文摘
|
通常纳米晶金属材料晶界上原子呈无序排列,晶界能高,因此纳米晶金属材料的热稳定性很差。研究发现通过界面调制作用制备纳米多层复合金属材料能够显著提高材料的热稳定性以及力学和抗辐照损伤等综合性能。本文综述了通过叠加轧制法制备得到的多层Cu-Nb复合板材的界面结构与性能。由于材料内部高密度半共格界面的调控作用,此层状材料具有优异的热稳定性和抗辐照损伤性能。例如,经500 ℃退火1 h此层状材料硬度基本不变。同时,本文对退火引起的层状材料的结构和力学性能演化机理做了系统分析。此外,辐照研究发现当辐照剂量低时,界面的局部高能区域为空洞形核提供了有效位点;当辐照剂量高时,界面可以显著抑制空洞的生长并调控空洞分布特征。此结果为通过合理设计界面结构使材料同时实现高热稳定性,高耐辐照和优异的力学性能提供了依据。 |
其他语种文摘
|
In general,disordered arrangement of atoms in the grain boundaries of nanocrystalline metallic materials makes their interface energy very high,resulting in poor thermal stability of such materials. It is proposed that the comprehensive properties of the materials can be significantly improved in metallic multilayer composites owing to interface effects. In this paper,the interfacial structure and properties of multilayer Cu-Nb composite plates prepared by accumulative roll bonding are reviewed. Due to the highdensity semi-coherent interfaces inside the materials,the materials have excellent thermal stability and irradiation damage resistance. After annealing at 500 ℃ for 1 h,the hardness is basically unchanged. Meanwhile,the structural and mechanical properties evolution mechanism of layered materials induced by annealing are systematically analyzed. As for irradiation damage resistance,it is found that when the irradiation dose is low,the local high interfacial energy regions of the interfaces can provide nucleation sites for voids; when the irradiation dose is high,the interface can significantly inhibit the growth of voids and regulate the distribution of voids. The findings in this work provide a basis for the reasonable design of interface structure to achieve high thermal stability,high radiation resistance and excellent mechanical properties. |
来源
|
电子显微学报
,2019,38(5):569-578 【扩展库】
|
DOI
|
10.3969/j.issn.1000-6281.2019.05.020
|
关键词
|
纳米层状复合材料
;
界面
;
位错
;
热稳定性
;
核辐照损伤
|
地址
|
1.
中国科学院金属研究所, 沈阳材料科学国家研究中心, 辽宁, 沈阳, 110016
2.
材料科学与工程学院,河北工业大学, 天津市材料层状复合与界面控制技术重点实验室, 天津, 300130
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1000-6281 |
学科
|
晶体学;一般工业技术;金属学与金属工艺 |
基金
|
国家自然科学基金
|
文献收藏号
|
CSCD:6586839
|
参考文献 共
43
共3页
|
1.
Meyers M A. Mechanical properties of nanocrystalline materials.
Progress in Materials Science,2006,51(4):427-556
|
CSCD被引
237
次
|
|
|
|
2.
Wang Y. High tensile ductility in a nanostructured metal.
Nature,2002,419(6910):912-915
|
CSCD被引
233
次
|
|
|
|
3.
Dao M. Toward a quantitative understanding of mechanical behavior of nanocrystalline metals.
Acta Materialia,2007,55(12):4041-4065
|
CSCD被引
53
次
|
|
|
|
4.
Zhu Y T. Retaining ductility.
Nature Materials,2004,3(6):351-352
|
CSCD被引
46
次
|
|
|
|
5.
Valiev R Z. Bulk nanostructured materials from severe plastic deformation.
Progress in Materials Science,2000,45(2):103-189
|
CSCD被引
506
次
|
|
|
|
6.
Zhao Y H. Simultaneously increasing the ductility and strength of nanostructured alloys.
Advanced Materials,2006,18(17):2280-2283
|
CSCD被引
77
次
|
|
|
|
7.
Zhu Y T. Deformation twinning in nanocrystalline materials.
Progress in Materials Science,2012,57(1):1-62
|
CSCD被引
87
次
|
|
|
|
8.
Bai X M. Efficient annealing of radiation damage near grain boundaries via interstitial emission.
Science,2010,327(5973):1631-1634
|
CSCD被引
65
次
|
|
|
|
9.
Malow T R. Grain growth in nanocrystalline iron prepared by mechanical attrition.
Acta Materialia,1997,45(5):2177-2186
|
CSCD被引
30
次
|
|
|
|
10.
Ames M. Unraveling the nature of room temperature grain growth in nanocrystalline materials.
Acta Materialia,2008,56(16):4255-4266
|
CSCD被引
8
次
|
|
|
|
11.
Demkowicz M. Interface structure and radiation damage resistance in Cu-Nb multilayer nanocomposites.
Physical Review Letters,2008,100(13):136102
|
CSCD被引
33
次
|
|
|
|
12.
Mara N A. Deformability of ultrahigh strength 5nm Cu/Nb nanolayered composites.
Applied Physics Letters,2008,92(23):231901
|
CSCD被引
14
次
|
|
|
|
13.
Lesure D R. Mechanical behaviour of laminated metal composites.
International Materials Reviews,1996,41(5):169-197
|
CSCD被引
30
次
|
|
|
|
14.
Phillips M A. A model for dislocation behavior during deformation of Al/Al_3Sc(fcc/L12) metallic multilayers.
Acta Materialia,2003,51(11):3157-3170
|
CSCD被引
10
次
|
|
|
|
15.
李万鹏. Mg-Y-Nd合金{ 1011}孪晶界面稀土原子偏聚的电子显微研究.
电子显微学报,2018,37(6):563-570
|
CSCD被引
6
次
|
|
|
|
16.
Randle V. Twinning-related grain boundary engineering.
Acta Materialia,2004,52(14):4067-4081
|
CSCD被引
64
次
|
|
|
|
17.
Lu L. Revealing the maximum strength in nanotwinned copper.
Science,2009,323(5914):607-610
|
CSCD被引
183
次
|
|
|
|
18.
Li X. Dislocation nucleation governed softening and maximum strength in nano-twinned metals.
Nature,2010,464(7290):877-880
|
CSCD被引
109
次
|
|
|
|
19.
Jang D. Deformation mechanisms in nanotwinned metal nanopillars.
Nature Nanotechnology,2012,7(9):594-601
|
CSCD被引
36
次
|
|
|
|
20.
Beyerlein I J. Double twinning mechanisms in magnesium alloys via dissociation of lattice dislocations.
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences,2012,468(2141):1496-1520
|
CSCD被引
5
次
|
|
|
|
|