立方碳化硅薄膜的层错结构特征
Structural feature of the stacking faults in cubic SiC films
查看参考文献12篇
文摘
|
本文利用微波等离子体增强化学气相沉积(MPCVD)和脉冲激光沉积(PLD)等薄膜制备技术分别在硅(Si) {001}基片上生长了立方碳化硅(3C-SiC)薄膜。两种方法制备的3C-SiC薄膜均与Si基片具有相同的外延关系3C-SiC〈110〉{001}//Si〈110〉{001},但PLD法制备的3C-SiC薄膜具有较低的层错密度并与Si基片间形成了平直的界面。基于高角环形暗场像(HAADF)原子结构表征的结果,探讨了3C-SiC薄膜中内禀层错、外禀层错、微孪晶和亚稳A-A'型层错的形成机制及它们之间的结构演化关系。 |
其他语种文摘
|
The cubic SiC (3C-SiC) thin films have been epitaxially grown on the Si { 001} substrates by the microwave plasma chemical vapor deposition (MPCVD) and pulsed laser deposition (PLD),respectively. The as-prepared 3C-SiC thin films and the Si substrates have an epitaxial orientation relationship of 3C-SiC〈110〉{ 001}//Si〈110〉{ 001} . The 3C-SiC thin film prepared by PLD has a lower density of stacking faults and the 3C-SiC/Si interface is flat. Based on the high angle annular dark field (HAADF) images, the formation mechanisms and structural evolution of the intrinsic and extrinsic stacking faults,micro-twins,and metastable A-A'type stacking faults in the 3C-SiC thin films have been discussed. |
来源
|
电子显微学报
,2019,38(5):459-463 【扩展库】
|
DOI
|
10.3969/j.issn.1000-6281.2019.05.005
|
关键词
|
碳化硅
;
层错
;
原子结构
;
球差校正透射电子显微术
|
地址
|
中国科学院金属研究所, 沈阳材料科学国家研究中心, 辽宁, 沈阳, 110016
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-6281 |
学科
|
晶体学;金属学与金属工艺;化学工业 |
基金
|
国家千人计划青年项目
;
中国科学院前沿科学重点研究项目
;
国家自然科学基金
;
辽宁省“兴辽英才计划”项目
|
文献收藏号
|
CSCD:6586824
|
参考文献 共
12
共1页
|
1.
Yamasaki J. Atomistic structure analysis of 3C-SiC/Si (001) interface and stacking faults by aberration-corrected transmission electron microscopy.
Microscopy and Microanalysis,2012,18(S2):514-515
|
CSCD被引
1
次
|
|
|
|
2.
施尔畏.
碳化硅晶体生长与缺陷,2012
|
CSCD被引
1
次
|
|
|
|
3.
Inamoto S. Atomic arrangement at the 3C-SiC/Si (001) interface revealed utilising aberration-corrected transmission electron microscope.
Philosophical Magazine Letters,2011,91(9):632-639
|
CSCD被引
2
次
|
|
|
|
4.
Ren X M. Development of SiC single crystal growth and device study.
Semiconductor Information,1998,4:7-12
|
CSCD被引
1
次
|
|
|
|
5.
Monaco G. Synthesis of heteroepitaxial 3C-SiC by means of PLD.
Applied Physics A,2011,105(1):225-231
|
CSCD被引
1
次
|
|
|
|
6.
Kusumori T. Control of polytype formation in silicon carbide heteroepitaxial films by pulsed-laser deposition.
Applied Physics Letters,2004,84(8):1272-1274
|
CSCD被引
1
次
|
|
|
|
7.
Xu Q F. Elimination of double position domains (DPDs) in epitaxial〈111〉3CSiC on Si (111) by laser CVD.
Electrochemical and Solid-State Letters,2017,426:662-666
|
CSCD被引
1
次
|
|
|
|
8.
Tan C. Blue emission from silicon-based β-SiC films.
Physics Letters A,2003,310(2):236-240
|
CSCD被引
4
次
|
|
|
|
9.
Nagasawa H. Reducing planar defects in 3C-SiC.
Chemical Vapor Deposition,2006,12:502-508
|
CSCD被引
3
次
|
|
|
|
10.
Celler G K. Etching of silicon by the RCA standard clean 1.
Electrochemical and Solid-State Letters,2000,3(1):47-49
|
CSCD被引
1
次
|
|
|
|
11.
Shirahata N. A new type of stacking fault in β-SiC.
Japanese Journal of Applied Physics,2001,40:505-508
|
CSCD被引
1
次
|
|
|
|
12.
Shirahata N. Thermal change of unstable stacking faults in β-SiC.
Japanese Journal of Applied Physics,2001,40:3969-3974
|
CSCD被引
1
次
|
|
|
|
|