鸭式布局冲压增程制导炮弹三维流场模拟与数值分析
Three-dimensional Flow Field Simulation and Numerical Analysis of Ramjet Extended-range Guided Projectile With Canard Layout
查看参考文献14篇
文摘
|
为研究鸭式布局冲压增程制导炮弹的流场与气动特性,根据其在冲压工作状态和被动飞行状态时对应的气动外形,应用分块网格划分方法和Realizable k-ε湍流模型对2种工作状态分别进行了三维流场模拟与数值计算分析,对不同马赫数下炮弹的流场与气动特性进行了研究。结果表明:在超声速条件下,相同攻角时阻力系数和升力系数都随马赫数增大而减小;同一工况下,与相同外形参数但不采用冲压形式的鸭式布局制导炮弹(参考弹)相比,冲压工作状态下阻力系数约大50.5%,升力系数约小35.7%,被动飞行状态下阻力系数约大42.9%,升力系数约小11.9%;被动飞行状态采用中心锥组件向前推进的形式对减小阻力是有利的。研究结果为鸭式布局冲压增程制导炮弹的气动外形设计与性能分析提供了一定的理论基础与参考。 |
其他语种文摘
|
In order to study the flow field and aerodynamic characteristics of the canard ramjet extended-range guided projectile,according to the aerodynamic characteristics of the projectile under the ramjet state and passive flight state,the 3D flow field simulation and numerical calculation analysis were carried out by using the sliding meshing technique and Realizable k-ε model respectively. The flow field and aerodynamic characteristics of projectile at different Mach numbers were studied. The results show that under supersonic conditions,both the drag coefficient and the lift coefficient decrease with the increase of Mach number at the same angle of attack. Under the same working condition,compared with the canard layout guided projectile with the same shape parameters but without ramjet structure(reference projectile),the drag coefficient is about 50.5% higher and the lift coefficient is about 35.7% smaller in the ramjet state,42.9% higher and 11.9% smaller in the passive flight state. The forward thrust form of the central cone assembly in the passive flight state is beneficial to reduce the drag. The research results provide a theoretical basis and reference for the aerdynamic shape design and performance analysis of canard ramjet extended-range guided projectile. |
来源
|
弹道学报
,2019,31(3):18-23 【核心库】
|
DOI
|
10.12115/j.issn.1004-499x(2019)03-004
|
关键词
|
制导炮弹
;
冲压发动机
;
流场特性
;
阻力系数
;
升力系数
|
地址
|
1.
南京理工大学能源与动力工程学院, 江苏, 南京, 210094
2.
辽沈工业集团有限公司研发中心设计二所, 辽宁, 沈阳, 110045
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1004-499X |
学科
|
航空 |
基金
|
国防预研项目
|
文献收藏号
|
CSCD:6580296
|
参考文献 共
14
共1页
|
1.
陈旭.
冲压发动机原理与技术,2014
|
CSCD被引
1
次
|
|
|
|
2.
Nusca M J.
Comparison of computational analysis with flight tests of a 40 mm solid fuel ramjet projectile,1989
|
CSCD被引
1
次
|
|
|
|
3.
Nusca M J. Computational fluid dynamics capability for the solid-fuel ramjet projectile.
Journal of Propulsion and Power,1990,6(3):256-262
|
CSCD被引
3
次
|
|
|
|
4.
Dionisio F. Aerodynamic wind-tunnel test of a ramjet projectile.
The 19th International Symposium of Ballistics,2001:529-536
|
CSCD被引
1
次
|
|
|
|
5.
韩光.
冲压增程弹丸进气道流场的实验和数值模拟,2006
|
CSCD被引
1
次
|
|
|
|
6.
陈雄. 高速旋转冲压增程弹用进气道复杂流场数值模拟.
固体火箭技术,2006,29(4):243-246
|
CSCD被引
2
次
|
|
|
|
7.
陈雄. 含侧向支柱冲压增程弹用进气道复杂流场数值模拟.
弹箭与制导学报,2007,27(4):181-184
|
CSCD被引
1
次
|
|
|
|
8.
向敏. 冲压增程炮弹发动机工作性能分析.
弹箭与制导学报,2006,26(4):185-191
|
CSCD被引
3
次
|
|
|
|
9.
史金光. 高速旋转底部排气弹的三维流场数值模拟与分析.
兵工学报,2017,38(6):1091-1092
|
CSCD被引
1
次
|
|
|
|
10.
Stockenstrom A. Numerical model for analysis and specification of a ramjet propelled artillery projectile.
The 19th International Symposium of Ballistics,2001:426-433
|
CSCD被引
1
次
|
|
|
|
11.
陈雄. 应用TTM网格研究冲压增程弹丸进气道内外流场.
固体火箭技术,2004,27(4):243-246
|
CSCD被引
4
次
|
|
|
|
12.
陈雄. 冲压增程弹丸进气道特性分析.
推进技术,2005,26(5):265-269
|
CSCD被引
7
次
|
|
|
|
13.
张家仙.
冲压增程炮弹绕流流场数值模拟研究,2005
|
CSCD被引
1
次
|
|
|
|
14.
Sahu J. Numerical computations of transonic critical aerodynamic behavior.
AIAA Journal,1990,28(5):807-816
|
CSCD被引
5
次
|
|
|
|
|