帮助 关于我们

返回检索结果

机器学习在太阳物理中的应用
The application of machine learning in solar physics

查看参考文献78篇

刘辉 1,2   季凯帆 1 *   金振宇 1  
文摘 太阳物理研究已经进入大数据时代,而机器学习作为大数据研究的一种良好工具已经获得越来越多的认可.本文评述了自2007年以来机器学习在太阳物理中的应用.从结果上看,最近4年这一领域的研究明显增加.所利用的数据包括地面和空间的各种仪器、各种类型和波段的太阳观测资料.研究领域涵盖太阳耀斑、日冕物质抛射、太阳黑子等太阳物理研究的主要方面.目前虽然获得一些很好的结果,但尚未有突破性的进展.使用的机器学习方法涉及分类、回归、聚类、降维以及深度学习等手段,但经典的算法,尤其是分类方法依然占据主导地位.这意味着机器学习在太阳物理的应用还处于起步阶段,但同样也意味着在这一领域还有很多工作可以深入开展.
其他语种文摘 Solar physics has entered the era of big data, and machine learning has gained more and more recognition as a good tool for big data research. This paper reviews the application results of machine learning in solar physics since 2007. Our studies have shown that research in this field has increased significantly during the last four years. Massive solar observation data obtained from various instruments on the ground and in space have been applied, and the topics have covered major aspects of solar physics, such as solar flares, coronal mass ejections, sunspots. Although some good results have emerged and proved that machine learning is suitable for data analysis of solar physics, there has not been a breakthrough yet. The machines learning methods that used in this field involve classification, regression, clustering, dimensionality reduction, and deep learning. However, classical algorithms, especially classical classification method is more popular. This means that the application of machine learning in solar physics is still in its infancy, but it also means that there is still a lot of work in this field that can be studied in the future.
来源 中国科学. 物理学 , 力学, 天文学,2019,49(10):109601 【核心库】
DOI 10.1360/SSPMA-2019-0031
关键词 太阳物理 ; 太阳活动 ; 机器学习 ; 深度学习
地址

1. 中国科学院云南天文台, 昆明, 650216  

2. 昆明理工大学信息工程与自动化学院, 昆明, 650500

语种 中文
文献类型 研究性论文
ISSN 1674-7275
学科 天文学;自动化技术、计算机技术
基金 国家自然科学基金
文献收藏号 CSCD:6579495

参考文献 共 78 共4页

1.  Murphy K P. Machine Learning: A Probabilistic Perspective,2012 CSCD被引 61    
2.  Huang X. Deep learning based solar flare forecasting model. I. Results for line-of-sight magnetograms. Astrophys J,2018,856:7 CSCD被引 20    
3.  Mirmomeni M. Forecasting sunspot numbers with the aid of fuzzy descriptor models. Space Weather,2007,5:S08004 CSCD被引 1    
4.  Yang X. Magnetic nonpotentiality in photospheric active regions as a predictor of solar flares. Astrophys J Lett,2013,774:1201-1205 CSCD被引 1    
5.  Yu D. Short-term solar flare prediction using a sequential supervised learning method. Sol Phys,2009,255:91-105 CSCD被引 13    
6.  Liu C. Predicting solar flares using SDO/HMI vector magnetic data products and the random forest algorithm. Astrophys J,2017,843:104 CSCD被引 6    
7.  Qahwaji R. Automated prediction of CMEs using machine learning of CME-flare associations. Sol Phys,2008,248:471-483 CSCD被引 3    
8.  Florios K. Forecasting solar flares using magnetogram-based predictors and machine learning. Sol Phys,2018,293:28 CSCD被引 4    
9.  Zhang L. Detection of coronal mass ejections using multiple features and space-time continuity. Sol Phys,2017,292:91 CSCD被引 3    
10.  Yuan Y. Automated flare forecasting using a statistical learning technique. Res Astron Astrophys,2010,10:785-796 CSCD被引 12    
11.  Boucheron L E. Prediction of solar flare size and time-to-flare using support vector machine regression. Astrophys J,2015,812:51 CSCD被引 1    
12.  Drews A. Microjets in the penumbra of a sunspot. Astron Astrophys,2017,602:A80 CSCD被引 1    
13.  Byrne J P. Investigating the kinematics of coronal mass ejections with the automated CORIMP catalog. J Space Weather Space Clim,2015,5:A19 CSCD被引 1    
14.  Rodriguez A. Clustering by fast search and find of density peaks. Science,2014,344:1492-1496 CSCD被引 818    
15.  Hinton G E. Reducing the dimensionality of data with neural networks. Science,2006,313:504-507 CSCD被引 1818    
16.  Lecun Y. Deep learning. Nature,2015,521:436-444 CSCD被引 3409    
17.  Lin H W. Why does deep and cheap learning work so well?. J Stat Phys,2017,168:1223-1247 CSCD被引 10    
18.  Nishizuka N. Solar flare prediction using machine learning with multiwavelength observations. Proc IAU,2017,13:310-313 CSCD被引 1    
19.  Nishizuka N. Solar flare prediction model with three machine-learning algorithms using ultraviolet brightening and vector magnetograms. Astrophys J,2017,835:156 CSCD被引 6    
20.  Benvenuto F. A hybrid supervised/unsupervised machine learning approach to solar flare prediction. Astrophys J,2018,853:90 CSCD被引 2    
引证文献 2

1 刘荣辉 地平式太阳望远镜库德焦面指向跟踪误差建模研究 天文研究与技术,2022,19(6):588-595
CSCD被引 2

2 王远方舟 窄带可调谐滤光器在太阳磁场测量中的应用 科学通报,2023,68(15):1927-1940
CSCD被引 2

显示所有2篇文献

论文科学数据集

1. 2019-2022年大柴旦飞行试验太阳活动预报数据集

数据来源:
国家对地观测科学数据中心
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号