QTT超宽带多波束信号接收与处理系统
Ultra wideband and multi-beam signal receiving and processing system of QTT
查看参考文献36篇
文摘
|
新疆奇台拟建的110 m全可动射电望远镜(QiTai Radio Telescope, QTT),主要用于脉冲星观测、引力波及黑洞探测、恒星形成和星系起源等基础科学研究领域.为了满足众多科学需求,将配备各种超宽带、多波束、高灵敏度接收机与处理系统,其主要功能是将射电望远镜收到的微弱的电磁波信号经接收机放大、滤波、变频之后在数字终端进行处理.由于该系统决定了射电望远镜的工作带宽、瞬时带宽和视场,并与灵敏度具有紧密联系,因此作为该大型射电望远镜的重要组成部分,对于望远镜的性能具有至关重要的作用.本文具体展示了QTT超宽带多波束信号接收与处理系统配置方案和主要性能指标,系统地论述了QTT接收机与信号采集与处理系统初步技术方案,分析了信号接收与处理系统的关键技术问题. |
其他语种文摘
|
The proposed 110-m full-steerable radio telescope (Qitai radio telescope, QTT) in Xinjiang is mainly used in the fields of basic scientific research, such as pulsar observation, gravitational wave and black hole detection, star formation, galactic origin. At the same time, it serves national projects such as China Lunar Exploration project and Mars exploration. In order to meet the scientific needs, QTT will be equipped with a variety of ultra-wideband, multi-beam, high-sensitivity receivers and signal processing systems, to treat the weak electromagnetic wave signal received by the radio telescope, such as amplification, filtering, frequency conversion and other processing and sending to the digital terminal and processed. As this system determines the operating bandwidth, instantaneous bandwidth and field of view of radio telescopes, and is closely related to sensitivity, as a key part of the large radio telescope, it plays an important role in the performance of telescopes. In this paper, the configuration scheme and main performance index of QTT UWB and multibeam signal receiving and processing system are demonstrated in detail. This paper systematically discusses the preliminary technical scheme of QTT receiver and signal acquisition and processing system, and analyzes the key technical problems of signal receiving and processing system. |
来源
|
中国科学. 物理学
, 力学, 天文学,2019,49(9):099502 【核心库】
|
DOI
|
10.1360/SSPMA-2019-0014
|
关键词
|
QTT
;
接收机
;
超宽带
;
多波束
;
信号接收与处理
|
地址
|
1.
中国科学院新疆天文台, 乌鲁木齐, 830011
2.
中国科学院射电天文重点实验室, 中国科学院射电天文重点实验室, 南京, 210008
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1674-7275 |
学科
|
天文学 |
基金
|
国家973计划
|
文献收藏号
|
CSCD:6579472
|
参考文献 共
36
共2页
|
1.
王娜. 新疆奇台110米射电望远镜.
中国科学:物理学力学天文学,2014,44:783-794
|
CSCD被引
66
次
|
|
|
|
2.
Morgan M A. Unformatted digital fiber-optic data transmission for radio astronomy front-ends.
Publ Astron Soc Pac,2013,125:695-704
|
CSCD被引
1
次
|
|
|
|
3.
Morgan M. Next generation radio astronomy receiver systems.
Instrum Methods Astrophy,2009
|
CSCD被引
1
次
|
|
|
|
4.
陈卯蒸. 大口径射电望远镜超宽带接收机技术发展.
中国科学:物理学力学天文学,2017,47:059504
|
CSCD被引
4
次
|
|
|
|
5.
吴盛殷. 射电天文中焦面阵或多波束馈源的应用.
天文学进展,2001,19:421-435
|
CSCD被引
8
次
|
|
|
|
6.
Cortes-Medellin G. The 64 m Sardinia radio telescope optics design.
Proceeding of IEEE Antennas and Propagation Society International Symposium,2002
|
CSCD被引
1
次
|
|
|
|
7.
Yang J. Preliminary design of Eleven Feed for SKA Band 1.
Proceeding of 31th URSI General Assembly and Scientific Symposium,2014
|
CSCD被引
1
次
|
|
|
|
8.
Engargiola G. Non-planar log-periodic antenna feed for integration with a cryogenic microwave amplifier.
Proceeding of IEEE Antennas and Propagation Society International Symposium,2002
|
CSCD被引
1
次
|
|
|
|
9.
Cortes-Medellin G. Non-planar quasi-self-complementary ultra-wideband feed antenna.
IEEE Trans Antennas Propagat,2011,59:1935-1944
|
CSCD被引
2
次
|
|
|
|
10.
Gawande R. Towards an ultra wideband low noise active sinuous feed for next generation radio telescopes.
IEEE Trans Antennas Propagat,2011,59:1945-1953
|
CSCD被引
3
次
|
|
|
|
11.
Dunning A. An ultra-wideband dielectrically loaded quad-ridged feed horn for radio astronomy.
Proceeding of IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications,2015
|
CSCD被引
1
次
|
|
|
|
12.
Dunning A. Offset quad ridged ortho-mode transducer with a 3.4:1 bandwidth.
Proceeding of 2013 Asia Pacific Microwave Conference,2013
|
CSCD被引
1
次
|
|
|
|
13.
Skinner S J. Wide-band orthomode transducers.
IEEE Trans Microwave Theor Techn,1991,39:294-300
|
CSCD被引
11
次
|
|
|
|
14.
Jacobs O B. Quad-ridge horn antenna with elliptically shaped sidewalls.
IEEE Trans Antennas Propagat,2013,61:2948-2955
|
CSCD被引
2
次
|
|
|
|
15.
Akgiray A. The quadruple-ridged flared horn: A flexible, multi-octave reflector feed spanning f/0.3 to f/2.5.
Proceeding of 7th European Conference on Antenna and Propagation,2013:768-769
|
CSCD被引
1
次
|
|
|
|
16.
Bauerle R J. The use of a dielectric lens to improve the efficiency of a dual-polarized quad-ridge horn from 5 to 15 GHz.
Ieee Trans Antennas Propagat,2009,57:1822-1825
|
CSCD被引
1
次
|
|
|
|
17.
Akgiray A H.
New Technologies Driving Decade-bandwidth Radio Astronomy: Quad-ridged Flared Horn and Compound-semiconductor LNAs. Dissertation for Doctoral Degree,2013
|
CSCD被引
1
次
|
|
|
|
18.
Yang J. BRAND: Development of quadruple-ridge flared horn with spline-defined profile for Band B of the wide band single pixel feed (WBSPF) advanced instrumentation program for SKA.
Proceeding of IEEE Antennas and Propagation International Symposium (APSURSI),2016
|
CSCD被引
1
次
|
|
|
|
19.
Xie L. Design and optimization of a quadruple-ridged flared horn (QRFH) feed for SKA.
Proceeding of Submitted to IEEE 7th Asia-Pacific Conference on Antennas and Propagation,2018
|
CSCD被引
1
次
|
|
|
|
20.
Kot J S. Wideband feed systems for radio astronomy.
Proceeding of 2014 International Workshop on Antenna Technology: Small Antennas, Novel EM Structures and Materials, and Applications (iWAT),2014
|
CSCD被引
1
次
|
|
|
|
|