面向情绪识别的脑电特征研究综述
A review of EEG features for emotion recognition
查看参考文献82篇
文摘
|
情绪是人对外界事物产生的心理和生理反应.准确地识别情绪在人机交互研究中占据着重要位置,其成果可应用在医学、教育、心理、军事等方向.由于脑电信号具有客观,不易伪装等特点,其在情绪识别领域的应用广受关注.从脑电信号中提取与情绪关联大、区分能力强的特征,有助于后续的分类器更有效地识别不同情绪状态.本文调研了目前常用于情绪识别研究领域的脑电信号特征,从时域、频域、时频域和空间域4个方面介绍其定义、计算方法,以及与情绪的联系,在SEED,DREAMER和CAS-THU 3个公开的脑电–情绪数据集上,使用SLDA算法评估和比较了各类脑电特征区分不同效价的能力.本文也对目前存在的问题和未来的研究方向进行了讨论和展望,可以为研究人员系统性地了解面向情绪识别的脑电特征研究现状以及开展后续研究提供思路. |
其他语种文摘
|
Emotion recognition is an important research topic in the human-machine interaction field,and it can be applied to medicine,education,psychology,military,and other areas.Electroencephalogram (EEG) signals are mostly used among various indices of emotion recognition.High accuracy of emotion classifiers can be achieved by extracting the most relevant and discriminant features of emotion states.This study surveys EEG features that are extensively used in current emotion recognition studies by introducing EEG features from the following four viewpoints:time domain,frequency domain,time{frequency domain,and space domain.An SLDA algorithm is imported to three public EEG-emotion datasets (SEED,DREAMER,and CAS-THU) to evaluate feature capabilities that distinguish emotion valence.Existing problems and future investigations are also discussed in this paper. |
来源
|
中国科学. 信息科学
,2019,49(9):1097-1118 【核心库】
|
DOI
|
10.1360/N112018-00337
|
关键词
|
情绪识别
;
脑电信号
;
特征提取
;
特征选择
;
情绪效价
|
地址
|
1.
清华大学计算机科学与技术系, 北京, 100084
2.
清华大学社会科学学院心理学系, 北京, 100084
3.
中国科学院心理研究所, 北京, 100101
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1674-7267 |
学科
|
社会科学总论;电子技术、通信技术 |
基金
|
国家自然科学基金
|
文献收藏号
|
CSCD:6579463
|
参考文献 共
82
共5页
|
1.
黄希庭.
心理学导论,1991
|
CSCD被引
9
次
|
|
|
|
2.
van den Broek E L. Ubiquitous emotion-aware computing.
Pers Ubiquit Comput,2013,17:53-67
|
CSCD被引
6
次
|
|
|
|
3.
Posner J. The circumplex model of affect: an integrative approach to affective neuroscience, cognitive development, and psychopathology.
Develop Psychopathol,2005,17:715-734
|
CSCD被引
14
次
|
|
|
|
4.
Lang P J. The emotion probe: studies of motivation and attention.
Am Psychol,1995,50:372-385
|
CSCD被引
29
次
|
|
|
|
5.
赵国朕. 基于生理大数据的情绪识别研究进展.
计算机研究与发展,2016,53:80-92
|
CSCD被引
19
次
|
|
|
|
6.
Alarcao S M. Emotions recognition using EEG signals: a survey.
IEEE Trans Affect Comput,2017
|
CSCD被引
22
次
|
|
|
|
7.
Chanel G. Short-term emotion assessment in a recall paradigm.
Int J Human-Comput Stud,2009,67:607-627
|
CSCD被引
8
次
|
|
|
|
8.
Hruby T. Event-related potentials-the P3 wave.
Acta Neurobiol Exp,2002,63:55-63
|
CSCD被引
2
次
|
|
|
|
9.
Luck S J.
The Oxford Handbook of Event-Related Potential Components,2011
|
CSCD被引
3
次
|
|
|
|
10.
Lithari C. Are females more responsive to emotional stimuli? A neurophysiological study across arousal and valence dimensions.
Brain Topogr,2010,23:27-40
|
CSCD被引
7
次
|
|
|
|
11.
Yazdani A. Implicit emotional tagging of multimedia using EEG signals and brain computer interface.
Proceedings of the 1st SIGMM Workshop on Social Media,2009:81-88
|
CSCD被引
1
次
|
|
|
|
12.
Codispoti M. Repetition and event-related potentials: distinguishing early and late processes in affective picture perception.
J Cogn Neurosci,2007,19:577-586
|
CSCD被引
3
次
|
|
|
|
13.
Olofsson J K. Affective picture processing: an integrative review of ERP findings.
Biol Psychol,2008,77:247-265
|
CSCD被引
43
次
|
|
|
|
14.
Olofsson J K. Affective visual event-related potentials: arousal, repetition, and time-on-task.
Biol Psychol,2007,75:101-108
|
CSCD被引
3
次
|
|
|
|
15.
Gianotti L R R. First valence, then arousal: the temporal dynamics of brain electric activity evoked by emotional stimuli.
Brain Topogr,2008,20:143-156
|
CSCD被引
1
次
|
|
|
|
16.
Jiang J F. Single-trial ERP detecting for emotion recognition.
Proceedings of the 17th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD),2016:105-108
|
CSCD被引
1
次
|
|
|
|
17.
Smith N K. May I have your attention, please: electrocortical responses to positive and negative stimuli.
Neuropsychologia,2003,41:171-183
|
CSCD被引
20
次
|
|
|
|
18.
Kim M K. A review on the computational methods for emotional state estimation from the human EEG.
Comput Math Method Med,2013,2013:13
|
CSCD被引
1
次
|
|
|
|
19.
Bernat E. Event-related brain potentials differentiate positive and negative mood adjectives during both supraliminal and subliminal visual processing.
Int J Psychophysiol,2001,42:11-34
|
CSCD被引
19
次
|
|
|
|
20.
Cuthbert B N. Brain potentials in affective picture processing: covariation with autonomic arousal and affective report.
Biol Psychol,2000,52:95-111
|
CSCD被引
38
次
|
|
|
|
|