基于全内反射透镜二次配光的水下LED通信研究
Underwater LED Communication Based on Secondary Light Distribution with Total Internal Reflection Lens
查看参考文献26篇
文摘
|
蓝绿LED通信被认为是解决水下近距离高速无线数据传输的有效手段。然而由于LED发散角较大,造成通信链路的几何损耗增加,制约了水下LED通信距离的提升。针对这一问题,提出了一种基于全内反射(TIR)透镜压缩水下LED通信阵列光源出射角的方法,将LED通信光源的出射角从130°压缩到7°;利用该光源研制发射样机,在大型水池中搭建测试系统,并对发射机的性能进行测试。结果表明,所设计的通信样机在水下传输距离为16.6m时,最大可支持23Mbit/s的传输速率;与未采用TIR透镜时相比,在同等速率条件下,传输距离增加9.3m。这表明基于TIR透镜二次配光的方法,可有效减小发射机出射角,降低链路损耗,增强通信系统的传输能力。这为提升水下LED通信的传输性能提供了新的技术思路。 |
其他语种文摘
|
Blue-green LED communication is considered to be an effective means to solve the problem of underwater short-distance high-speed wireless data transmission.However,as LED divergence angle is usually quite large,the geometric loss is great in such communication link,which would reduce the communication distance.Aiming at this problem,a method is proposed to compress the emitter angle of underwater LED array light source with the total internal reflection(TIR)lens in this work.First,the divergence angle of LED array source is compressed from 130° to 7°.Then,a communication transmitter prototype is developed with the source,and a test system is built in a large tank to test the performance of the transmitter.The experimental results show that the communication prototype designed in this paper can support a maximum transmission rate of 23 Mbit/s when the underwater transmission distance is 16.6m.Compared with the case without TIR lens,the maximum transmission distance increases 9.3 mat the same rate.It shows that the method of secondary light distribution with TIR lens can effectively reduce the transmitter's divergence angle and the link loss of transmission system,enhance the transmission capacity of communication system.It provides a new technical means for improving the transmission performance of underwater LED communication. |
来源
|
光学学报
,2019,39(8):0806001 【核心库】
|
DOI
|
10.3788/AOS201939.0806001
|
关键词
|
光通信
;
无线光通信
;
水下光通信
;
蓝绿光通信
;
全内反射透镜
|
地址
|
1.
中国科学院西安光学精密机械研究所, 瞬态光学与光子技术国家重点实验室, 陕西, 西安, 710119
2.
中国科学院大学, 北京, 100049
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0253-2239 |
学科
|
电子技术、通信技术 |
基金
|
国家重点研发计划
;
青岛海洋科学与技术试点国家实验室主任基金
|
文献收藏号
|
CSCD:6570492
|
参考文献 共
26
共2页
|
1.
徐文. 海洋信息获取、传输、处理及融合前沿研究评述.
中国科学:信息科学,2016,46(8):1053-1085
|
CSCD被引
36
次
|
|
|
|
2.
Kumar P. Recent trends in multicarrier underwater acoustic communications.
2015 IEEE Underwater Technology (UT),February 23-25,2015,Chennai,India,2015:15163550
|
CSCD被引
1
次
|
|
|
|
3.
Kaushal H. Underwater optical wireless communication.
IEEE Access,2016,4:1518-1547
|
CSCD被引
61
次
|
|
|
|
4.
Zeng Z Q. A survey of underwater optical wireless communications.
IEEE Communications Surveys & Tutorials,2017,19(1):204-238
|
CSCD被引
61
次
|
|
|
|
5.
米乐. 基于低密度奇偶校验码和脉冲位置调制的水下长距离光通信系统设计.
中国激光,2018,45(10):1006002
|
CSCD被引
5
次
|
|
|
|
6.
赵太飞. 蛙人协作中的水下无线光通信邻居发现方法.
光学学报,2018,38(12):1206002
|
CSCD被引
8
次
|
|
|
|
7.
王阳. 海洋弱湍流条件下光孤子脉冲通信性能.
中国激光,2018,45(5):0506004
|
CSCD被引
2
次
|
|
|
|
8.
Farr N. Optical modem technology for seafloor observatories.
OCEANS 2006,September 18-21,2006,Boston,MA,USA,2006:9431301
|
CSCD被引
1
次
|
|
|
|
9.
Farr N. An integrated, underwater optical/acoustic communications system.
OCEANS'10IEEE SYDNEY,May 24-27,2010, Sydney,Australia,2010:11595850
|
CSCD被引
1
次
|
|
|
|
10.
Bowen A D. An untethered ROV for routine access and intervention in the deep sea.
2013 OCENS-San Diego,September 23-27,2013,San Diego,CA,USA,2013:14115423
|
CSCD被引
1
次
|
|
|
|
11.
Pontbriand C. Wireless data harvesting using the AUV sentry and WHOI optical modem.
OCEANS 2015-MTS/IEEE Washington,October 19-22,2015,Washington,D. C,2015:15798705
|
CSCD被引
1
次
|
|
|
|
12.
武梦龙. LED作为收发元件的双向可见光通信系统方案及实现.
光学学报,2018,38(4):0406003
|
CSCD被引
5
次
|
|
|
|
13.
Cossu G. Full-fledged 10base-T ethernet underwater optical wireless communication system.
IEEE Journal on Selected Areas in Communications,2018,36(1):194-202
|
CSCD被引
5
次
|
|
|
|
14.
Wang P L. A cost-efficient real-time 25 Mb/s system for LED-UOWC:design,channel coding,FPGA implementation,and characterization.
Journal of Lightwave Technology,2018,36(13):2627-2637
|
CSCD被引
13
次
|
|
|
|
15.
Tian P F. High-speed underwater optical wireless communication using a blue GaN-based micro-LED.
Optics Express,2017,25(2):1193-1201
|
CSCD被引
19
次
|
|
|
|
16.
Liu X Y. 34.5 m underwater optical wireless communication with 27.0Gbps data rate based on a green laser diode with NRZ-OOK modulation.
Optics Express,2017,25(22):27937-27947
|
CSCD被引
23
次
|
|
|
|
17.
Chen Y F. 26m/5.5Gbps air-water optical wireless communication based on an OFDM-modulated 520-nm laser diode.
Optics Express,2017,25(13):14760-14765
|
CSCD被引
16
次
|
|
|
|
18.
Wu T C. Blue laser diode enables underwater communication at 12.4Gbps.
Scientific Reports,2017,7:40480
|
CSCD被引
16
次
|
|
|
|
19.
Zhang L. Improved m-QAMOFDM transmission for underwater wireless optical communications.
Optics Communications,2018,423:180-185
|
CSCD被引
3
次
|
|
|
|
20.
Xue B. Characteristics of IIInitride based laser diode employed for short range underwater wireless optical communications.
Optics Communications,2018,410:525-530
|
CSCD被引
4
次
|
|
|
|
|