低温生长铝镓砷光折变效应的研究
Photorefractive effect of low-temperature-grown aluminum gallium arsenide
查看参考文献25篇
文摘
|
三元化合物铝镓砷(AlGaAs)是一种可用于全光固体超快诊断技术的重要材料.基于低温外延技术的AlGaAs材料不仅具有低温生长砷化镓(low-temperature grown GaAs,LT-GaAs)超短载流子寿命的特点,并且可以调整材料的禁带宽度,为超快诊断系统的设计增加了极大的灵活性.泵浦-探测实验结果表明,低温外延生长可以有效加速AlGaAs材料的非平衡载流子复合,非平衡载流子弛豫时间小于300 fs,而非平衡载流子的复合时间低至2.08 ps.由于经过特殊的钝化工艺处理,极大地降低了表面复合对载流子衰退过程的影响,而低温外延生长引入的As原子团簇,形成了深能级缺陷,是加速载流子复合的主要因素.基于单复合中心的间接复合理论,建立LT-AlGaAs载流子演化模型,获得与复合速率相关的关键物理参量:载流子俘获面积σ_e=6.6×10~(—14)cm~2,σ_h=4.7×10~(—15)cm~2,计算结果与实验相符.该方法可用于半导体材料载流子演化特性定量分析,有助于推进超快响应半导体材料的优化改进. |
其他语种文摘
|
The ternary compound aluminum gallium arsenide is an important material that can be used in all-optical solid-state ultrafast diagnostic technology. The low-temperature-epitaxially-grown AlGaAs (LT-AlGaAs)not only has the characteristics of ultra-short carrier lifetime of low-temperature-grown gallium arsenide (LT-GaAs), but also possesses the advantage of adjustability of band gap, which will provide great flexibility for the design of ultra-fast diagnostic systems. We use low-temperature epitaxial growth technology to grow AlGaAs on a GaAs substrate. The low-temperature-grown AlGaAs can effectively absorb 400 nm pump light to generate excess carrier. Therefore, we use a femtosecond laser with a wavelength of 800 nm and a pulse width of 200 fs as a light source to generate 400-nm pump light after passing through the BBO crystal, and 800 nm light without frequency doubling as the probe light. Using such a light source, we build a pump probe experimental platform to test the LT-AlGaAs. We normalize the experimental results and deconvolute it with the normalized laser pulses to obtain the response function of the semiconductor to the pump light. Therefore, we know that the nonequilibrium carrier relaxation time is less than 300 fs, and the nonequilibrium carrier recombination time is 2.08 ps. Due to the special passivation process, the effect of surface recombination on the carrier decay process is greatly reduced. The As clusters introduced by low-temperature epitaxial growth form deep level defects are the main factor for accelerating carrier recombination. In order to understand the complex process of photogenerated nonequilibrium carriers in depth, we use the indirect recombination theory of single recombination center to calculate the carrier recombination process, and establish an LT-AlGaAs carrier evolution model. Thus we obtain the key physical parameter related to the recombination rate, which is the carrier trapping area. We also use a theoretical model of carrier-regulated refractive index to calculate the effect of carrier concentration on the amount of change in refractive index. Combining our AlGaAs carrier evolution model, we simulate the refractive index change process of LT-AlGaAs after being illuminated by pump light. The simulation results are in good agreement with the experimental results. The method can be used for the quantitative analysis of carrier evolution characteristics of semiconductor materials, and it can conduce to the optimization and improvement of ultra-fast response semiconductor materials. |
来源
|
物理学报
,2019,68(16):167801 【核心库】
|
DOI
|
10.7498/aps.68.20190459
|
关键词
|
光折变
;
铝镓砷
;
泵浦-探测
;
载流子寿命
|
地址
|
1.
中国科学院西安光学精密机械研究所, 中国科学院超快诊断技术重点实验室, 西安, 710119
2.
中国科学院大学, 北京, 100049
3.
火箭军研究院, 北京, 100101
4.
山西大学, 极端光学协同创新中心, 太原, 030006
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-3290 |
学科
|
一般工业技术;电子技术、通信技术 |
基金
|
国家自然科学基金青年科学基金
|
文献收藏号
|
CSCD:6566887
|
参考文献 共
25
共2页
|
1.
顾礼. 光电子能量角度分布和空间电荷效应对变像管条纹相机的影响.
强激光与粒子束,2015,27:062011
|
CSCD被引
2
次
|
|
|
|
2.
潘京生. 微通道板的饱和效应对条纹相机动态范围的影响分析.
物理学报,2012,61:194211
|
CSCD被引
6
次
|
|
|
|
3.
Bradley D K.
Rev. Sci. Instrum,1995,66:716
|
CSCD被引
25
次
|
|
|
|
4.
Baker K L.
Appl. Phys. Lett,2013,103:151111
|
CSCD被引
6
次
|
|
|
|
5.
梁玲亮. 全光固体条纹相机的理论及其静态实验研究.
物理学报,2014,63:060702
|
CSCD被引
5
次
|
|
|
|
6.
王博.
物理学报,2015,64:200701
|
CSCD被引
4
次
|
|
|
|
7.
Gao G.
Opt. Express,2017,25:8721
|
CSCD被引
3
次
|
|
|
|
8.
Bennett B R.
IEEE J. Quantum Electron,1990,26:113
|
CSCD被引
35
次
|
|
|
|
9.
Vurgaftman I.
J. Appl. Phys,2001,89:5815
|
CSCD被引
247
次
|
|
|
|
10.
Dankowski S U.
Appl. Phys. Lett,1996,68:37
|
CSCD被引
2
次
|
|
|
|
11.
Lochtefeld A J.
Appl. Phys. Lett,1996,69:1465
|
CSCD被引
4
次
|
|
|
|
12.
Fleischer S.
J. Appl. Phys,1997,81:190
|
CSCD被引
2
次
|
|
|
|
13.
Khanna V K.
Progress in Quantum Electronics,2005,29:59
|
CSCD被引
2
次
|
|
|
|
14.
夏宁. 表面硫钝化对GaAs材料光响应特性的影响.
中国激光,2018,45:0603002
|
CSCD被引
6
次
|
|
|
|
15.
Aspnes D E.
J. Appl. Phys,1986,60:754
|
CSCD被引
24
次
|
|
|
|
16.
吕铁铮. 飞秒激光在BBO晶体中倍频效率的数值计算.
物理学报,2002,51:1268
|
CSCD被引
7
次
|
|
|
|
17.
Vernon S P.
Rev. Sci. Instrum,2012,83:193
|
CSCD被引
1
次
|
|
|
|
18.
Lasher G.
Phys. Rev,1964,133:553
|
CSCD被引
2
次
|
|
|
|
19.
Nilsson N G.
Appl. Phys. Lett,1978,33:653
|
CSCD被引
4
次
|
|
|
|
20.
Wolff P A.
Phys. Rev,1962,126:405
|
CSCD被引
9
次
|
|
|
|
|