应用实时荧光定量RT-PCR高效检测葡萄病毒B
Effective detection of Grapevine virus B by real-time fluorescent quantitative RTPCR
查看参考文献16篇
文摘
|
本研究建立了葡萄病毒B的SYBR GreenⅠ实时荧光定量RT-PCR(RT-qPCR)检测技术。该技术标准曲线扩增效率102.4%,相关系数0.999,最低检测限达10-4倍稀释cDNA,灵敏度为常规RT-PCR的100倍。重复性试验组内和组间变异系数分别为0.00%~ 0.65%和0.02%~ 2.00%,表明检测稳定性好。该技术对田间葡萄样品检测适用范围广,对枝条和老叶柄检测效果最好,冬季枝条和春夏秋季所有老叶柄样品检出率均为100%,与常规RT-PCR检测结果一致。对于其他季节或部位样品,RT-qPCR检出率(43% ~ 74%)则普遍高于常规RT-PCR(5% ~ 71%),特别是春季样品和春夏秋季所有嫩叶样品,检出率比常规RT-PCR分别高31%和38%。对来自我国13个省21个品种的52份田间葡萄样品检测结果表明,RTqPCR共检测到6个样品为阳性,检出率11.5%,为常规RT-PCR(检出率5.8%)的2倍。 |
其他语种文摘
|
A SYBR GreenⅠRT-qPCR method for Grapevine virus B (GVB) was established.An excellent linear correlation(0.999) and amplification efficiency (102.4%) were obtained from standard curve.The detection limit of the method was 10-4dilution fold,which was 100 times higher than conventional RT-PCR.The coefficient of variation ranging from 0.00%-0.65% intra group and 0.02%-2.00% inter group indicated the excellent stability and reproducibility of the method.The RT-qPCR method could be used to detect a wide range of field sample types.The dormant branches and old petioles were the best materials for GVB detection,the detection rates of which were all 100% and were the same as conventional RT-PCR.However,for samples from other seasons and positions,the detection rates of RT-qPCR (43% to 74%) were generally higher than that of conventional RT-PCR (5% to 71%).Especially for the samples in spring and young leaves in each season,the detection rates of RT-qPCR were 31 and 38 percent higher than conventional RT-PCR,respectively.Six out of 52 samples (belonging to 21 cultivars) from 13 provinces in China were detected to be positive by RT-qPCR(11.5%),which was two times that of conventional RT-PCR (5.8%). |
来源
|
植物病理学报
,2019,49(4):569-576 【核心库】
|
DOI
|
10.13926/j.cnki.apps.000381
|
关键词
|
葡萄
;
葡萄病毒B
;
实时荧光定量RT-PCR
;
常规RT-PCR
|
地址
|
中国农业科学院果树研究所,国家落叶果树脱毒中心, 兴城, 125100
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0412-0914 |
学科
|
植物保护 |
基金
|
国家现代农业产业技术体系建设专项资金项目
|
文献收藏号
|
CSCD:6566495
|
参考文献 共
16
共1页
|
1.
Boscia D. Properties of a filamentous virus isolated from grapevines affected by corky bark.
Archives of Virology,1993,130(1/2):109-120
|
CSCD被引
6
次
|
|
|
|
2.
Goszczynski D E. Divergent molecular variants of Grapevine virus B (GVB) from corky bark (CB)-affected and CB-negative LN33 hybrid grapevines.
Virus Genes,2010,41(2):273-281
|
CSCD被引
6
次
|
|
|
|
3.
Yang X K. The Establishment of optimized systems detecting Grapevine virus B(in Chinese).
石河子大学学报,2007,25(3):282-285
|
CSCD被引
1
次
|
|
|
|
4.
Saldarelli P. The nucleotide sequence and genome organization of Grapevine virus B.
Journal of General Virology,1996,77(10):2645-2652
|
CSCD被引
2
次
|
|
|
|
5.
Saldarelli P. Immunodetection of the 20 kDa protein encoded by ORF 2 of Grapevine virus B.
Journal of Plant Pathology,2000,82(2):157-158
|
CSCD被引
2
次
|
|
|
|
6.
Martelli G P. Directory of virus and virus-like diseases of the grapevine and their agents.
Journal of Plant Pathology,2014,96(1S):73-88
|
CSCD被引
1
次
|
|
|
|
7.
Hu G J. Detection and sequence analysis of Grapevine virus B isolates from China.
Acta Virologica,2014,58(2):180-184
|
CSCD被引
5
次
|
|
|
|
8.
Liu X. Field investigation and serological detection of grapevine viruses in Sichuan province(in Chinese).
西南农业学报,2004,17(1):52-56
|
CSCD被引
1
次
|
|
|
|
9.
Fan X D. Multiplex RTPCR for simultaneous detection of four grapevine viruses(in Chinese).
园艺学报,2012,39(5):949-956
|
CSCD被引
1
次
|
|
|
|
10.
Ren F. Prokaryotic expression of Grapevine virus B coat protein and antiserum preparation (in Chinese).
园艺学报,2016,43(11):2233-2242
|
CSCD被引
1
次
|
|
|
|
11.
Beuve M. A sensitive one-step real-time RT-PCR method for detecting Grapevine leafroll-associated virus 2 variants in grapevine.
Journal of Virological Methods,2007,141(2):117-124
|
CSCD被引
10
次
|
|
|
|
12.
Qin Z Y. An efficient Taq-Man real-time RT-PCR assay for detecting Apple chlorotic leaf spot virus (ACLSV) (in Chinese).
植物保护学报,2015,42(4):551-556
|
CSCD被引
1
次
|
|
|
|
13.
Zhou J. Development and application of a quantitative RT-PCR approach for quantification of Grapevine fanleaf virus (in Chinese).
园艺学报,2016,43(3):538-548
|
CSCD被引
2
次
|
|
|
|
14.
MacKenzie D J. Improved RNA extraction from woody plants for the detection of viral pathogens by reverse transcription-polymerase chain reaction.
Plant Disease,1997,81(2):222-226
|
CSCD被引
25
次
|
|
|
|
15.
Osman F. Real-time RT-PCR (TaqMan) assays for the detection of viruses associated with Rugose wood complex of grapevine.
Journal of Virological Methods,2008,154(1/2):69-75
|
CSCD被引
7
次
|
|
|
|
16.
Krebelj A J. Spatio-temporal distribution of Grapevine fanleaf virus (GFLV) in grapevine.
European Journal of Plant Pathology,2015,142(1):159-171
|
CSCD被引
8
次
|
|
|
|
|