基于HSV颜色空间的快速边缘提取算法
Fast Edge Extraction Algorithm Based on HSV Color Space
查看参考文献18篇
文摘
|
针对当前无人机障碍物检测能力较弱的问题,基于图像快速边缘提取算法,提出一种改进型局部二值模式(I-LBP)算子来增强边缘提取效果.在HSV (Hue, Saturation, Value)颜色空间中,利用I-LBP算子描述像素点的局部纹理特征,并采用Hausdorff距离确定边缘点,最后用矩形框圈出障碍物轮廓.该算法根据模糊集理论对传统LBP算子进行改进,通过将简单的二值化描述方式扩充到三维向量,增强了LBP算子对局部纹理特征的描述能力及其抗噪声的能力.利用MATLAB软件进行仿真验证的结果表明:I-LBP算子具有良好的稳健性,在光照条件较差并有噪声污染的情况下依旧可以准确地识别障碍物;同时,I-LBP算子还具有良好的实时性,可以满足无人机的避障要求. |
其他语种文摘
|
In order to improve the ability of unmanned aerial vehicle (UAV) to detect obstacles, a fast edge detection algorithm is studied and an improved local binary pattern (I-LBP) operator is proposed to enhance the edge extraction effect. In HSV (Hue, Saturation, Value) color space, the I-LBP operator is used to describe the local texture features of pixels. The Hausdorff distance is used to confirm the edge pixels. And the contour of the obstacle is framed in the rectangular box. The algorithm improves the traditional LBP operator according to the fuzzy set theory. The simple binary description of the local texture features is extended to three-dimensional vector. It enhances the LBP operator's ability to describe the local texture features and is noise-robust.The simulation verification is carried out with MATLAB. The results show that the I-LBP operator has good robustness and can identify obstacles under the condition of poor illumination and noise pollution. It also has high real-time ability, which can meet the requests of UAV in avoiding obstacles. |
来源
|
上海交通大学学报
,2019,53(7):765-772 【核心库】
|
DOI
|
10.16183/j.cnki.jsjtu.2019.07.001
|
关键词
|
无人机避障
;
HSV颜色空间
;
I-LBP算子
;
模糊集理论
;
Hausdorff距离
|
地址
|
上海交通大学仪器科学与工程系, 上海, 200240
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1006-2467 |
学科
|
机械、仪表工业;自动化技术、计算机技术 |
基金
|
国家自然科学基金
|
文献收藏号
|
CSCD:6550908
|
参考文献 共
18
共1页
|
1.
Kownacki C. A concept of laser scanner designed to realize 3D obstacle avoidance for a fixed-wing UAV.
Robotica,2016,34(2):243-257
|
CSCD被引
1
次
|
|
|
|
2.
Cieluk J. A stereovision system for real time obstacle avoidance by unmanned aerial vehicle.
Solid State Phenomena,2013,198:159-164
|
CSCD被引
1
次
|
|
|
|
3.
史浩明.
基于嵌入式平台的无人机视觉跟踪避障方法研究,2016
|
CSCD被引
1
次
|
|
|
|
4.
蒋华军. 基于改进Sobel算法的焊缝X射线图像气孔识别方法.
上海交通大学学报,2017,51(6):665-671
|
CSCD被引
2
次
|
|
|
|
5.
李忠海. 整数阶滤波的分数阶Sobel算子的边缘检测算法.
计算机工程与应用,2018,54(4):179-184
|
CSCD被引
6
次
|
|
|
|
6.
刘必罡. Laplace-Gaussian滤波算子在指纹增强中的应用.
电子设计工程,2016,24(23):149-152
|
CSCD被引
2
次
|
|
|
|
7.
刘克平. 基于改进Canny算法的工件边缘检测方法.
广西大学学报(自然科学版),2017,42(6):2022-2029
|
CSCD被引
3
次
|
|
|
|
8.
黄海龙. 基于局部模糊增强的顺序形态学边缘检测算法.
仪器仪表学报,2012,33(11):2608-2614
|
CSCD被引
7
次
|
|
|
|
9.
Rathore S. A hesitant fuzzy based security approach for fog and mobile-edge computing.
IEEE Access,2018,6:688-701
|
CSCD被引
2
次
|
|
|
|
10.
Yin W. Adaptive and accurate color edge extraction method for one-shot shape acquisition.
Optical Engineering,2016,55(9):094104
|
CSCD被引
1
次
|
|
|
|
11.
Verma O P. An optimal fuzzy system for edge detection in color images using bacterial foraging algorithm.
IEEE Transactions on Fuzzy Systems,2017,25(1):114-127
|
CSCD被引
5
次
|
|
|
|
12.
Zotin A. Fast algorithm of image enhancement based on nulti-scale retinex.
Procedia Computer Science,2018,131:6-14
|
CSCD被引
9
次
|
|
|
|
13.
Kruse A W. Perceptually uniform color space for visualizing trivariate linear polarization imaging data.
Optics Letters,2018,43(11):2426-2429
|
CSCD被引
4
次
|
|
|
|
14.
Zhang G. Local information enhanced LBP.
Journal of Central South University,2013,20(11):3150-3155
|
CSCD被引
1
次
|
|
|
|
15.
Chen L. Facial expression recognition based on the Q-shift DT-CWT and rotation invariant LBP.
Journal of Donghua University (English Edition),2012,29(1):71-75
|
CSCD被引
2
次
|
|
|
|
16.
Bezdek J C. FCM: The fuzzy c-means clustering algorithm.
Computers & Geosciences,1984,10(2/3):191-203
|
CSCD被引
303
次
|
|
|
|
17.
衡德正. 基于Frenet标架的车门匹配.
上海交通大学学报,2018,52(3):318-323
|
CSCD被引
1
次
|
|
|
|
18.
Ameri M R. Graph-based keyword spotting in historical manuscripts using Hausdorff edit distance.
Pattern Recognition Letters,2019,121:61-67
|
CSCD被引
1
次
|
|
|
|
|