回转体齐射出水过程空泡演化规律与弹道特性实验研究
Experimental Research on Cavity Evolution Pattern and Trajectory Characteristics in the Water-exit Process of Salvoed Revolving Bodies
查看参考文献17篇
文摘
|
为研究齐射出水过程中回转体间的相互干扰,基于高速摄像技术对小型回转体齐射出水过程开展实验研究。利用图像处理技术对采集图像序列中的回转体和空泡轮廓进行识别提取,并通过对比单发回转体和双发回转体在有无艇速下的弹道特性,分析齐射过程回转体间的流体动力干扰和艇速对其影响。实验结果表明:在回转体无艇速2发齐射出水过程中,首发回转体形成的低压区使次发回转体的内侧空泡发展较大,次发回转体的运动轨迹发生向首发回转体方向偏转;当存在艇速时,回转体空泡演化规律和弹道特性发生改变,在迎流侧高压和水流冲刷作用下,空泡均向背流侧发展较大,首发回转体发生沿流向偏转,次发回转体处于首发回转体的尾流场中,其姿态和轨迹仍存在向首发回转体方向偏转,但由于艇速作用使偏转幅度相对较小。 |
其他语种文摘
|
In order to study the mutual interference between revolving bodies salvoed underwater in the water-exit process, the experimental research on the water-exit process of revolving bodies is carried out based on high-speed photography. The countors of cavity and revolving bodies are identified and extracted using image processing technology. The hydrodynamic disturbance between the revolving bodies in the water-exit process and the effect of frame velocity are analyzed by comparing the trajectory characteristics of single revolving body and two revolving bodies launched with and without submarine speed. The experimental results show that the low pressure zone formed by the first revolving body makes the cavity inside the second revolving body develops larger in the water-exit process without submarine speed, and the trajectory of the second revolving body deflects to the first revolving body. The cavity evolution rule and the trajectory characteristics of revolving body change in the presence of submarine speed under the action of high pressure at the up-flow side and current scour, the cavity develops towards the back-flow side, and the trajectory of the first revolving body deflects along the flow direction; and the second revolving body is in the wake field of the first revolving body, so the trajectory of the second revolving body still has the attitude and the track deflection to the first revolving body, but its deflection amplitude is relatively smaller than that of the revolving body launched without submarine speed. |
来源
|
兵工学报
,2019,40(6):1226-1234 【核心库】
|
DOI
|
10.3969/j.issn.1000-1093.2019.06.013
|
关键词
|
回转体
;
水下齐射
;
空泡演化
;
多相流
;
弹道特性
|
地址
|
哈尔滨工业大学航天学院, 黑龙江, 哈尔滨, 150001
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-1093 |
学科
|
水利工程 |
文献收藏号
|
CSCD:6545134
|
参考文献 共
17
共1页
|
1.
Logvinovich G V.
Hydrodynamics of flows with free boundaries,1969
|
CSCD被引
16
次
|
|
|
|
2.
Brennen C. A numerical solution of axismmetric cavity flows.
Journal of Fluid Mechanics,1969,37(4):671-688
|
CSCD被引
2
次
|
|
|
|
3.
De Barros E A. Investigation of a method for predicting AUV derivatives.
Ocean Engineering,2008,35(16):1627-1636
|
CSCD被引
5
次
|
|
|
|
4.
Weiland C J. Concept analysis and laboratory observations on a water piercing missile launcher.
Ocean Engineering,2010,37(11):959-965
|
CSCD被引
23
次
|
|
|
|
5.
Finnegan W. Numerical simulation of linear water waves and wave-structure interaction.
Ocean Engineering,2012,43:23-31
|
CSCD被引
11
次
|
|
|
|
6.
刘海军. 潜射导弹出筒过程肩空泡形态和水阻动力特性研究.
工程力学,2012,29(7):313-319
|
CSCD被引
3
次
|
|
|
|
7.
任晓庆.
潜射航行体垂直发射过程三维数值模拟,2015
|
CSCD被引
4
次
|
|
|
|
8.
施红辉. 高速物体出水过程超空泡流动特性的实验研究.
气体物理,2012,7(4):85-89
|
CSCD被引
1
次
|
|
|
|
9.
王之海. 水下航行体在非规则波中出水运动数值仿真研究.
舰船电子工程,2018,38(7):76-79
|
CSCD被引
4
次
|
|
|
|
10.
刘可. 发射速度对航行体出水姿态影响数值仿真研究.
舰船电子工程,2017,37(7):62-65
|
CSCD被引
3
次
|
|
|
|
11.
李智生. 航行体不同速度出筒尾部流场及受载特性分析.
舰船电子工程,2017,37(8):66-69
|
CSCD被引
2
次
|
|
|
|
12.
张纪华. 超空泡航行器升沉运动流体动力特性研究.
计算力学学报,2012,29(6):983-988
|
CSCD被引
4
次
|
|
|
|
13.
郑帮涛. 潜射导弹出水过程水弹道及流体动力研究进展.
导弹与航天运载技术,2010(5):8-11,55
|
CSCD被引
6
次
|
|
|
|
14.
陈超倩. 考虑空化作用的潜射航行体弹道仿真.
工程力学,2014,31(10):242-247
|
CSCD被引
2
次
|
|
|
|
15.
张宪龙.
气幕发射方式下航行体流体动力和结构动力特性研究,2013
|
CSCD被引
1
次
|
|
|
|
16.
赵一帆.
潜射航行体共架垂直发射流体动力特性研究,2014
|
CSCD被引
1
次
|
|
|
|
17.
赵通.
发射筒布局及横流对水下航行体共架发射影响的研究,2015
|
CSCD被引
1
次
|
|
|
|
|