有界变化时滞和联合连通拓扑条件下的分布式无人机编队飞行控制策略
Flight Control Strategy for Distributed UAV Formation under the Conditions of Bounded Time-varying Delay and Jointly-connected Topology
查看参考文献23篇
文摘
|
针对具有非线性动力学特性的多无人机系统通信时滞在有界区间内变化和网络拓扑联合连通情况下的编队控制问题,提出一种基于一致性理论的分布式编队控制策略。利用Lyapunov-Krasovskii函数分析编队的稳定性,推导编队稳定的充分条件。该策略不强调时滞的导数特征,并且可将通信拓扑的高维矩阵求解问题转化为若干个连通部分的低维矩阵求解问题,因此适用性广、计算量小、实时性好。通过仿真验证了非线性快变时滞和随机跳变时滞情况下策略的有效性。结果表明,该方法可指导无人机编队快速聚集和收敛至任意对称或非对称目标队形和以目标速度保持飞行。 |
其他语种文摘
|
A consistency theory-based distributed formation control strategy is proposed for the multi-UAVs with nonlinear dynamic characteristics, in which the communication delay is changed in bounded interval and the network topology is jointly-connected. The Lyapunov-Krasovskii function is used to analyze the formation stability and deduce its sufficient conditions. The derivative characteristic of time-delay is not considered, and the high dimensional matrix solution of communication topology is transformed into low dimensional matrix solution with several connected parts. The proposed strategy has the advantages of wide applicability, low computational cost and excellent real-time performance. The effectivity of the proposed method in the cases of nonlinear fast-varying and random hopping delays was verified through simulation experiment. Experimental results show that the proposed strategy can be used to direct the multi-UAVs to assemble and converge to any symmetric or asymmetric target formation with scheduled speed. |
来源
|
兵工学报
,2019,40(6):1179-1189 【核心库】
|
DOI
|
10.3969/j.issn.1000-1093.2019.06.008
|
关键词
|
无人机编队
;
时变时滞
;
切换拓扑
;
编队控制
|
地址
|
1.
石家庄铁道大学电气与电子工程学院, 河北, 石家庄, 050043
2.
陆军工程大学石家庄校区无人机工程系, 河北, 石家庄, 050003
3.
63850部队总体研究所, 吉林, 白城, 137001
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-1093 |
学科
|
航空 |
基金
|
国家自然科学基金
|
文献收藏号
|
CSCD:6545129
|
参考文献 共
23
共2页
|
1.
王鹏. 基于一致性多无人机编队的研究现状与发展趋势.
舰船电子工程,2017,37(9):1-9
|
CSCD被引
5
次
|
|
|
|
2.
蒋国平. 基于收敛速率的多智能体系统一致性研究综述.
南京邮电大学学报,2017,37(3):15-25
|
CSCD被引
1
次
|
|
|
|
3.
Li S H. Finite-time consensus algorithm for multi-agent systems with double-integrator dynamics.
Automa-tica,2011,47(8):1706-1712
|
CSCD被引
65
次
|
|
|
|
4.
Lin P. Average consensus in networks of multi-agents with both switching topology and coupling time-delay.
Physical A:Statistical Mechanics and Its Applications,2008,387(1):303-313
|
CSCD被引
55
次
|
|
|
|
5.
Wang X L. Finite-time consensus for multi-agent networks with second-order agent dynamics.
Proceedings of the 17th IFAC World Congress,2008:15185-15190
|
CSCD被引
3
次
|
|
|
|
6.
Zhou Y J. Higher-order finite-time consensus protocol for heterogeneous multi-agent systems.
International Journal of Control,2015,88(2):285-294
|
CSCD被引
7
次
|
|
|
|
7.
Zhou Y J. Robust synchronization of second-order multi-agent system via pinning control.
IET Control Theory & Applications,2015,9(5):775-783
|
CSCD被引
2
次
|
|
|
|
8.
Zhou Y J. Synchronization of complex dynamical networks via PI pinning control.
Proceedings of the 35th Chinese Control Conference,2016:8225-8229
|
CSCD被引
1
次
|
|
|
|
9.
Yu W W. Distributed control gains design for consensus in multi-agent systems with second-order nonlinear dynamics.
Automatica,2013,49(7):2107-2115
|
CSCD被引
27
次
|
|
|
|
10.
Wen G H. Consensus of second order multi-agent systems with delayed nonlinear dynamics and intermittent communications.
International Journal of Control,2013,86(2):322-331
|
CSCD被引
12
次
|
|
|
|
11.
Li Z K. Consensus of multi-agent systems with general linear and Lipschitz nonlinear dynamics using distributed adaptive protocols.
IEEE Transactions on Automatic Control,2013,58(7):1786-1791
|
CSCD被引
30
次
|
|
|
|
12.
Zhao Y. Robust consensus tracking of multi-agent systems with uncertain Lur'e-type non-linear dynamics.
LET Control Theory & Applications,2013,7(9):1249-1260
|
CSCD被引
1
次
|
|
|
|
13.
Pan H. Consensus of double-integrator discrete-time multi-agent system based on second-order neighbor's information.
Proceedings of the 26th Chinese Control and Decision Conference,2014:1946-1951
|
CSCD被引
2
次
|
|
|
|
14.
Yu W W. Some necessary and sufficient conditions for second-order consensus in multi-agent dynamical systems.
Automatica,2010,46(6):1089-1095
|
CSCD被引
95
次
|
|
|
|
15.
Huo Z H. Research on robust fault-tolerant control for networked control system with packet dropout.
Journal of Systems Engineering and Electronics,2007,18(1):76-82
|
CSCD被引
23
次
|
|
|
|
16.
Song Q. Second-order leader-following consensus of nonlinear multi-agent systems via pinning control.
Systems and Control Letters,2010,59(9):553-562
|
CSCD被引
38
次
|
|
|
|
17.
王品. 存在时滞的分布式无人机编队控制方法.
计算机测量与控制,2016,24(9):181-184
|
CSCD被引
4
次
|
|
|
|
18.
罗贺富. 多时变时滞的多智能体系统的分布式编队控制.
广东工业大学,2017,34(4):89-96
|
CSCD被引
2
次
|
|
|
|
19.
张亚霄. 线性时滞多智能体系统多类型拓扑切换下的一致性.
北京工业大学学报,2016,42(2):184-189
|
CSCD被引
1
次
|
|
|
|
20.
薛瑞彬. 具有时延及联合连通拓扑的多飞行器分布式协同编队飞行控制研究.
兵工学报,2015,36(3):492-502
|
CSCD被引
12
次
|
|
|
|
|