活性污泥微生物群落宏组学研究进展
Advances in meta-omics research on activated sludge microbial community
查看参考文献100篇
文摘
|
活性污泥是全球最常用的废水生物处理人工生态系统,微生物是驱动其污染净化能力的关键。活性污泥微生物群落所有物种与基因(简称"微生物组")的研究先后经历了"显微镜观察和纯菌培养分离"(1915)、"PCR扩增-测序"(1994)和"高通量测序-宏组学分析"(2006)三个重要阶段的发展变迁。相应地,我们对活性污泥微生物组的认知经历了从最早对微型动物(如钟虫和轮虫)及其他微生物的形貌观察和纯种培养鉴定到今天对整个微生物组的全局多样性认识的飞跃。近13年来,基于高通量测序的宏组学方法被广泛应用于揭示活性污泥微生物群落组成结构和功能,我们现在充分意识到活性污泥微生物组蕴藏着大量不可培养新物种和基因多样性,驱动着各类污染物的降解与转化。目前,特异性分子标记基因的扩增子测序技术已经被广泛应用于揭示城市和工业废水处理活性污泥微生物组和典型功能种群(如硝化细菌和聚磷菌)的时空多样性和群落构建机制,进而为未来实现活性污泥微生物组功能的精准调控奠定理论基础。宏基因组学研究在群落、种群和个体基因组水平全面解析了活性污泥微生物组驱动的碳、氮、磷元素循环过程,以及有机微污染物的生物降解和转化机理。将来活性污泥微生物组学研究需要在"标准化的组学分析方法和绝对定量""高通量培养组学""高通量功能基因组学"和"多组学方法的结合及多种方法并用"4个方面取得实现精准生态基因组学所需的技术突破,以最大限度发掘活性污泥微生物组在污水处理与资源回收领域的生态学与工程学价值。 |
其他语种文摘
|
Activated sludge is the most popular artificial ecosystem for biotechnological wastewater treatment worldwide,and microorganisms are the key driver of its de-contamination ability of wastewater.The study of all species and genes of activated sludge microbial communities (referred to as 'microbiome') has undergone three major stages of tremendous development:microscopic observation and pure culture isolation (since 1915),PCR amplification and sequencing (since 1994),and high-throughput sequencing (HTS) and meta-omics (since 2006).Correspondingly,our understanding of the activated sludge microbiome has experienced the leap from the earliest observations of the morphology of micro-fauna (e.g.Vorticella and Rotifera) and other microorganisms to complete diversity profile of the entire microbiome nowadays.In the past 13 years,HTS-based meta-omics research has been widely used to reveal the structure and function of activated sludge microbiome.We have now fully realized that the activated sludge microbiome contains a large diversity of uncultivable new species and genes,driving the degradation and conversion of various pollutants.At present,amplicon sequencing analysis of specific molecular marker genes has been widely used to reveal the spatial and temporal diversity of urban and industrial wastewater treatment activated sludge microbiome,typical functional bacteria (e.g.nitrifying bacteria and polyphosphate-accumulating bacteria) and community assembly patterns,providing theoretical basis for achieving precise regulation of activated sludge microbiome functioning.Metagenomic studies have comprehensively revealed,the microbiome-driven carbon,nitrogen and phosphorus cycling in activated sludge and the biodegradation and transformation mechanisms of organic micro-pollutants at levels of community,population and individual genomes.Future research on the activated sludge microbiome is supposed to make breakthroughs in the following four technical aspects for the achievement of precision eco-genomics:i) standardized meta-omics approaches and absolute quantification,ii) high-throughput culture omics;iii) high-throughput functional metagenomics,and iv) integrated use of multi-omics methods and multiple methods,which are important for maximizing the ecological and engineering values of activated sludge microbiome in wastewater treatment and resource recovery. |
来源
|
微生物学通报
,2019,46(8):2038-2052 【核心库】
|
DOI
|
10.13344/j.microbiol.china.190365
|
关键词
|
活性污泥
;
微生物组
;
群落基因组学
;
群落结构
;
微生物功能
|
地址
|
1.
西湖大学工学院环境与资源工程中心环境微生物组与生物技术实验室, 浙江, 杭州, 310024
2.
浙江西湖高等研究院前沿技术研究所, 浙江, 杭州, 310024
3.
香港大学土木系环境生物技术实验室, 香港, 999077
4.
南方科技大学环境科学与工程学院, 广东, 深圳, 518055
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
0253-2654 |
学科
|
环境科学基础理论;行业污染、废物处理与综合利用 |
文献收藏号
|
CSCD:6544410
|
参考文献 共
100
共5页
|
1.
Steiner A E. The nature of activated sludge flocs.
Water Research,1976,10(1):25-30
|
CSCD被引
6
次
|
|
|
|
2.
Zhang T. 454 pyrosequencing reveals bacterial diversity of activated sludge from 14 sewage treatment plants.
The ISME Journal,2012,6(6):1137-1147
|
CSCD被引
138
次
|
|
|
|
3.
Ju F. Wastewater treatment plant resistomes are shaped by bacterial composition, genetic exchange, and upregulated expression in the effluent microbiomes.
The ISME Journal,2019,13(2):346-360
|
CSCD被引
21
次
|
|
|
|
4.
Bartow E. Purification of sewage by aeration in the presence of activated sludge.
Journal of Industrial & Engineering Chemistry,1915,7(4):318-320
|
CSCD被引
1
次
|
|
|
|
5.
Blackall L L. Molecular identification of activated sludge foaming bacteria.
Water Science & Technology,1994,29(7):35-42
|
CSCD被引
1
次
|
|
|
|
6.
Martin H G. Metagenomic analysis of two enhanced biological phosphorus removal (EBPR) sludge communities.
Nature Biotechnology,2006,24(10):1263-1269
|
CSCD被引
52
次
|
|
|
|
7.
Ju F. Taxonomic relatedness shapes bacterial assembly in activated sludge of globally distributed wastewater treatment plants.
Environmental Microbiology,2014,16(8):2421-2432
|
CSCD被引
17
次
|
|
|
|
8.
Yu K. Metagenomic and metatranscriptomic analysis of microbial community structure and gene expression of activated sludge.
PLoS One,2012,7(5):e38183
|
CSCD被引
29
次
|
|
|
|
9.
Wilmes P. Towards exposure of elusive metabolic mixed-culture processes: the application of metaproteomic analyses to activated sludge.
Water Science & Technology,2006,54(1):217-226
|
CSCD被引
7
次
|
|
|
|
10.
Handelsman J. Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products.
Chemistry & Biology,1998,5(10):R245-R249
|
CSCD被引
295
次
|
|
|
|
11.
Ju F. Bacterial assembly and temporal dynamics in activated sludge of a full-scale municipal wastewater treatment plant.
The ISME Journal,2015,9(3):683-695
|
CSCD被引
30
次
|
|
|
|
12.
Jiang X T. Toward an intensive longitudinal understanding of activated sludge bacterial assembly and dynamics.
Environmental Science & Technology,2018,52(15):8224-8232
|
CSCD被引
6
次
|
|
|
|
13.
Ibarbalz F M. Industrial activated sludge exhibit unique bacterial community composition at high taxonomic ranks.
Water Research,2013,47(11):3854-3864
|
CSCD被引
15
次
|
|
|
|
14.
Wells G F. Ammonia-oxidizing communities in a highly aerated full-scale activated sludge bioreactor: Betaproteobacterial dynamics and low relative abundance of crenarchaea.
Environmental Microbiology,2009,11(9):2310-2328
|
CSCD被引
21
次
|
|
|
|
15.
Zhang T. Ammonia-oxidizing archaea and ammonia-oxidizing bacteria in six full-scale wastewater treatment bioreactors.
Applied Microbiology and Biotechnology,2011,91(4):1215-1225
|
CSCD被引
14
次
|
|
|
|
16.
He S M. "Candidatus Accumulibacter" population structure in enhanced biological phosphorus removal sludges as revealed by polyphosphate kinase genes.
Applied and Environmental Microbiology,2007,73(18):5865-5874
|
CSCD被引
31
次
|
|
|
|
17.
Mielczarek A T. Population dynamics of bacteria involved in enhanced biological phosphorus removal in Danish wastewater treatment plants.
Water Research,2013,47(4):1529-1544
|
CSCD被引
30
次
|
|
|
|
18.
Guo F. Profiling bulking and foaming bacteria in activated sludge by high throughput sequencing.
Water Research,2012,46(8):2772-2782
|
CSCD被引
26
次
|
|
|
|
19.
Nielsen P H. Identity and ecophysiology of filamentous bacteria in activated sludge.
FEMS Microbiology Reviews,2009,33(6):969-998
|
CSCD被引
14
次
|
|
|
|
20.
Ju F. 16S rRNA gene high-throughput sequencing data mining of microbial diversity and interactions.
Applied Microbiology and Biotechnology,2015,99(10):4119-4129
|
CSCD被引
14
次
|
|
|
|
|