帮助 关于我们

返回检索结果

基于独立成分分析的射频干扰信号消除方法
Radio Frequency Mitigation Using Independent Component Analysis

查看参考文献22篇

戴伟 1,2,3   尚振宏 4 *   徐永华 1   刘辉 4   杨亚光 4   强振平 5  
文摘 射电天文已成为人类研究宇宙的重要途径。但随着人类生产、生活的发展,射频干扰信号对射电天文观测的影响越来越严重,观测数据的好坏关系到科学成果的质量甚至结论的真伪。目前广泛采用基于阈值判断射频干扰,对干扰信号直接舍弃部分观测数据的方法。此类方法存在阈值确定困难、观测带宽和时间被缩减等问题。针对脉冲星观测射电信号中,各干扰信号及射电信号统计独立以及呈现出的非高斯性,利用独立成分分析对混合信号进行分解,并根据观测信号中脉冲星信号和干扰信号的分布特点识别脉冲星信号,实现干扰信号消除。使用该方法对云南天文台40 m射电望远镜接收到的脉冲星观测信号进行独立成分分析,分解出独立的射频干扰信号和脉冲星信号,消除射频干扰信号。独立成分分析法在干扰信号消除、射电信号保留及信噪比方面均取得良好效果。
其他语种文摘 Radio astronomy has become an important way to study the universe.However,with the development of human activities,radio frequency interference (RFI) has more and more serious impact on radio astronomical observation.The quality of observation is related to the quality of scientific achievements and even the authenticity of conclusions.At present,RFI detection based on threshold is widely used,and part of the observed data is directly discarded for the interference.Such methods have difficulties in determining threshold values,and reduce observation bandwidth and time.Observed the fact that interferences and radio signals are statistically independent and non-Gaussian,we propose a novel approach for RFI mitigation using independent component analysis to decompose the mixed signal,then identifying the pulsar signal according to the different distribution characteristics between the pulsar signal and RFI signals.The pulsar observations received from 40-meter radio telescope in Yunnan Observatories are processed by the new approach.The results show:RFI signals in pulsar observations are cleanly mitigated while pulsar signal is barely affected and good signal-to-noise ratio is achieved.
来源 天文研究与技术 ,2019,16(3):268-277 【核心库】
关键词 射频干扰 ; 独立成分分析 ; 脉冲星 ; 干扰信号消除
地址

1. 中国科学院云南天文台, 云南, 昆明, 650011  

2. 昆明理工大学, 云南省计算机技术应用重点实验室, 云南, 昆明, 650500  

3. 中国科学院大学, 北京, 100049  

4. 昆明理工大学信息工程与自动化学院, 云南, 昆明, 650500  

5. 西南林业大学大数据与智能工程学院, 云南, 昆明, 650224

语种 中文
文献类型 研究性论文
ISSN 1672-7673
学科 天文学
基金 国家自然科学基金 ;  云南省重点研发计划项目 ;  云南省应用基础研究计划项目
文献收藏号 CSCD:6533026

参考文献 共 22 共2页

1.  Akeret J. Radio frequency interference mitigation using deep convolutional neural networks. Astronomy & Computing,2017,18:35-39 CSCD被引 9    
2.  Blandford R D. Pulsars and physics. Philosophical Transactions of the Royal Society B Biological Sciences,1992,341(1660):177-192 CSCD被引 1    
3.  Ransom S M. Pulsars are cool. seriously. Proceedings of the International Astronomical Union,2012,8(Suppl 291):3-10 CSCD被引 1    
4.  Wolszczan A. A planetary system around the millisecond pulsar PSR1257+12. Nature,1992,355(6356):145-147 CSCD被引 34    
5.  Taylor J H. Binary pulsars and relativistic gravity. Reviews of Modern Physics,1994,66(3):711-719 CSCD被引 5    
6.  Offringa A R. Post-correlation radio frequency interference classification methods. Monthly Notices of the Royal Astronomical Society,2010,405(1):155-167 CSCD被引 6    
7.  Fridman P A. RFI mitigation methods in radio astronomy. Astronomy & Astrophysics,2001,378(1):327-344 CSCD被引 17    
8.  安涛. 射电频率干扰的消减. 天文学报,2017,58(5):18-39 CSCD被引 3    
9.  Baan W A. Radio frequency interference mitigation at the Westerbork Synthesis Radio Telescope: algorithms,test observations,and system implementation. The Astronomical Journal,2004,128(2):933-949 CSCD被引 5    
10.  Akeret J. HIDE & SEEK: end-to-end packages to simulate and process radio survey data. Astronomy & Computing,2017,18:8-17 CSCD被引 1    
11.  Cendes Y. LOFAR observations of Swift J1644 + 57 and implications for short-duration transients,2018 CSCD被引 1    
12.  Wolfaardt C J. Machine learning approach to radio frequency interference (RFI) classification in radio astronomy,2016 CSCD被引 2    
13.  Bethapudi S. Separation of pulsar signals from noise using supervised machine learning algorithms. Astronomy & Computing,2018,23:15(14pp) CSCD被引 4    
14.  Cardoso J F. Blind signal separation: statistical principles. Proceedings of the IEEE,2009,86(10):2009-2025 CSCD被引 71    
15.  Hyvarinen A. What is independent component analysis?,2003:145-164 CSCD被引 1    
16.  Huber P J. Projection pursuit. Annals of Statistics,1985,13(2):435-475 CSCD被引 46    
17.  Cover T M. Elements of information theory (Wiley series in telecommunications and signal processing),2017 CSCD被引 1    
18.  Hyvarinen A. Independent component analysis: algorithms and applications. Neural Networks,2000,13(4):411-430 CSCD被引 490    
19.  Hyvarinen A. New approximations of differential entropy for independent component analysis and projection pursuit. Advances in Neural Information Processing Systems,1997,10:273-279 CSCD被引 3    
20.  Hyvarinen A. Fast and robust fixed-point algorithms for independent component analysis. IEEE Transactions on Neural Networks,1999,10(3):626-634 CSCD被引 571    
引证文献 3

1 林天琪 基于小波变换的射频干扰消除方法的研究 天文学报,2021,62(3):29-1-29-10
CSCD被引 0 次

2 黄振 基于调制宽带转换器的频谱分辨率研究 天文研究与技术,2022,19(4):353-358
CSCD被引 0 次

显示所有3篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号