土壤硒富集空间分布特征及影响因素研究
Enrichment spatial distribution characteristics of soil selenium and its influencing factors
查看参考文献41篇
文摘
|
以揭阳市土壤为对象,系统采集了表层土壤样(0~20 cm)1 330个和深层土壤样(150~200 cm)331个,并利用相关性分析、回归分析、方差分析及GIS空间分析技术等方法对土壤硒的含量分布、富集特征及影响因素进行了系统的分析。结果表明,揭阳市表层土壤Se含量处于0.02~2.01 mg/kg之间,几何平均值为0.48 mg/kg,是中国土壤Se平均含量的1.66倍。揭阳市土壤总体呈足硒及富硒特征,不存在硒过剩,极少区域土壤呈硒缺乏特征,表层与深层土壤表现基本一致,富硒土壤主要分布于普宁市、惠来县及北部边缘。表层土壤中Se富集面积达到52.03%,但在空间上分布零散,这可能与母质、土壤类型等因素有关。强富集区域集中分布于花岗岩与粉砂岩为母质的土壤区,而大部分由第四纪冲积物形成的土壤无富集。方差分析表明:不同母质、土壤类型及土地利用方式对土壤Se的含量及富集水平均造成不同程度的影响,其中影响揭阳市表层土壤Se含量的主要因素为成土母质。除此之外,土壤理化性质及海拔也是影响揭阳市表层土壤Se富集的重要因素。回归分析表明表层土壤Se与pH值呈极显著的负相关,并且分别与有机碳、Fe_2O_3及Al_2O_3呈极显著线性正相关。 |
其他语种文摘
|
Selenium (Se), a trace element in the soil, is mainly ingested by the human body from the soil-plant system through food chain. Meanwhile, Se in the soil is subjected to geological, geographical environmental factors and soil properties. Therefore, it is essential to study contents and distributions of Se in the soil for developing Se-enriched agricultural products and protecting human health. Jieyang City is one of distinctive agriculture areas of Guangdong Province, China, and the status of soil Se has an important impact on the development of local distinctive agriculture. Based on the above reasons, a total of 1 330 topsoil samples (0-20 cm) and 331 deep soil samples (150-200 cm) were collected systematically from Jieyang City to discuss the distribution, enrichment characteristics and influencing factors (including parent materials, soil types, land using types, soil physicochemical properties and elevation) of soil Se. Results showed that contents of Se in topsoil ranged from 0.02 to 2.01 mg/kg with a geometric mean value of 0.48 mg/kg that was 1.66 times larger than the average Se contents of soil in China. The topsoils of Jieyang City were in the category of Se sufficiency and Se abundance on the whole. According to the spatial distribution derived by the Kriging interpolation, soils of Se abundance were mainly distributed in Puning, Huilai and northern edge of Jieyang City. The Se enrichment area in the topsoil reached 52.03% of Jieyang City, but the spatial distribution was scattered, which may be related to factors such as parent materials and soil types. Strong Se enrichment soils were mainly distributed in the areas of granite and siltstone, while most of the soil which came from quaternary alluvial deposits was not enriched. Analysis of variance showed that different parent materials, soil types and land use patterns had different effects on soil Se contents and enrichment. The main factor affecting Se contents in surface soil of Jieyang City was soil parent materials. The soils which derived from mudstone and tuff were more likely to enrich Se. Among different land use types, farmland had great influences on soil Se content due to long-term agricultural activities. Among different soil types, yellow soil and latosolic red soil were easy to enrich Se due to their high contents of organic matter. Although soil Se content differed among different land use types, it was not obvious that soil Se was affected by human activities in Jieyang City. In addition, the physicochemical properties of soil and altitude were also important factors of leading to Se enrichment in the topsoil of Jieyang City. Regression analysis showed that there was a significantly negative correlation between Se and pH (P < 0.01), and Se was significantly positively correlated with TOC (P < 0.01), Fe_2O_3 (P < 0.01) and Al_2O_3 (P < 0.01) in the topsoil. Spearman correlation analysis showed that the Se content in the topsoil of Jieyang City had a significantly positive correlation with elevation (P < 0.01). The higher elevation, the soil Se was more easily enriched. Thus, in the development process of distinctive agriculture in Jieyang City, it is recommended to rationally use Se-enriched soils, plant Se-enriched crops, and promote the development of local distinctive agriculture in accordance with the principle of adapting to local conditions. |
来源
|
农业工程学报
,2019,35(10):83-90 【核心库】
|
DOI
|
10.11975/j.issn.1002-6819.2019.10.011
|
关键词
|
土壤
;
硒
;
分布
;
富集特征
;
影响因素
;
揭阳市
|
地址
|
1.
长江大学, 油气资源与勘探技术教育部重点实验室, 武汉, 430100
2.
长江大学资源与环境学院, 武汉, 430100
3.
中国科学院广州地球化学研究所, 中国科学院矿物学与成矿学重点实验室, 广州, 510640
4.
中国科学院广州地球化学研究所, 有机地球化学国家重点实验室, 广州, 510640
5.
广东省有色金属地质局第940队, 清远, 511500
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1002-6819 |
学科
|
农业基础科学 |
基金
|
国家自然科学基金
;
教育部油气资源勘探技术重点实验室开放基金
;
中国科学院广州地球化学研究所有机地球化学国家重点实验室基金
;
湖北省自然科学基金
;
长江大学大学生创新创业训练项目
|
文献收藏号
|
CSCD:6530824
|
参考文献 共
41
共3页
|
1.
Jing W. Speciation, distribution, and bioavailability of soil selenium in the Tibetan Plateau Kashin-Beck disease area: A case study in Songpan County, Sichuan Province, China.
Biological Trace Element Research,2013,156(1/2/3):367-375
|
CSCD被引
1
次
|
|
|
|
2.
Schomburg L. On the importance of selenium and iodine metabolism for thyroid hormone biosynthesis and human health.
Molecular Nutrition and Food Research,2010,52(11):1235-1246
|
CSCD被引
14
次
|
|
|
|
3.
Tan J. Selenium in environment and Kaschin-Beck disease.
Acta Geochimica,1988,7(3):273-280
|
CSCD被引
4
次
|
|
|
|
4.
李家熙.
人体硒缺乏与过剩的地球化学环境特征及其预测,2000
|
CSCD被引
45
次
|
|
|
|
5.
Rayman M P. Selenium in cancer prevention: A review of the evidence and mechanism of action.
Proceedings of the Nutrition Society,2005,64(4):527-542
|
CSCD被引
35
次
|
|
|
|
6.
薛瑞玲. 外源亚硒酸盐和硒酸盐在土壤中的价态转化及其生物有效性.
环境科学,2011,32(6):1726-1733
|
CSCD被引
14
次
|
|
|
|
7.
Jarzynska G. Selenium and 17 other largely essential and toxic metals in muscle and organ meats of Red Deer (Cervus elaphus)-consequences to human health.
Environment Intertational,2011,37(5):882-888
|
CSCD被引
9
次
|
|
|
|
8.
乔虹. 桑肠杆菌菌株的富硒特性及其喷施对玉米籽粒的硒素强化.
农业工程学报,2018,34(17):284-290
|
CSCD被引
1
次
|
|
|
|
9.
邵亚. 西南典型岩溶区土壤硒空间分布预测.
农业工程学报,2016,32(22):178-183
|
CSCD被引
5
次
|
|
|
|
10.
章海波. 香港土壤研究Ⅱ.土壤硒的含量、分布及其影响因素.
土壤学报,2005,42(3):404-410
|
CSCD被引
74
次
|
|
|
|
11.
商靖敏. 洋河流域不同土地利用类型土壤硒(Se)分布及影响因素.
环境科学,2015,36(1):301-308
|
CSCD被引
36
次
|
|
|
|
12.
Jiang Y. Source apportionment and health risk assessment of heavy metals in soil for a township in Jiangsu Province, China.
Chemosphere,2017,168:1658-1668
|
CSCD被引
79
次
|
|
|
|
13.
郦逸根. 浙江富硒土壤资源调查与评价.
第四纪研究,2005,25(3):323-330
|
CSCD被引
42
次
|
|
|
|
14.
Szolnoki Z. Cumulative impacts of human activities on urban garden soils: Origin and accumulation of metals.
Environmental Pollution,2013,177(4):106-115
|
CSCD被引
11
次
|
|
|
|
15.
雷志栋. 土壤特性空间变异性初步研究.
水利学报,1985(9):12-23
|
CSCD被引
10
次
|
|
|
|
16.
徐文. 海南省土壤中硒含量及影响因素分析.
安徽农业科学,2010,38(6):3026-3027
|
CSCD被引
18
次
|
|
|
|
17.
郑涛. 石台县天然富硒大米产业现状与发展.
中国稻米,2017,23(5):114-117
|
CSCD被引
3
次
|
|
|
|
18.
郭莉. 北京市平原区土壤中硒的含量和分布.
现代地质,2012,26(5):859-864
|
CSCD被引
23
次
|
|
|
|
19.
迟凤琴. 黑龙江省土壤硒分布及其影响因素研究.
土壤学报,2016,53(5):1262-1274
|
CSCD被引
51
次
|
|
|
|
20.
张晓平. 西藏土壤中硒的含量及分布.
土壤学报,2000,37(4):558-562
|
CSCD被引
32
次
|
|
|
|
|