古海洋微量元素地球化学演化: 对关键地质事件研究的启发
Geochemical Recycling of Trace Elements in Paleo-oceans: Implications to the Studies Associated with Key Geological Events
查看参考文献61篇
文摘
|
古海洋微量元素地球化学循环、沉积环境和生物发育之间发生着复杂的相互作用,对重要地质事件具有指示意义.为加深对这一领域的认识,本文综述了微量元素在古环境重建及在关键地质事件的地球化学应用研究进展.以我国华南地区震旦系-下寒武统为例,阐述了关键地质事件时期古海洋中微量元素变化、沉积环境演变和生物演化之间的协同机制.指出今后值得进一步从微量元素同位素以及不同盆地乃至全球尺度上对比探讨震旦系-早寒武世沉积地层中微量元素分布特征及其在寒武纪生物大爆发中的响应. |
其他语种文摘
|
The complicated interactions among the geochemical recycling of trace elements,sedimentary environment,and biological development of paleo-oceans are of indicative significance to key geological events. In order to deepen the understanding of this topic,the research progress about the geochemical applications of trace elements for reconstructing paleoenvironment and for studying key geological events has been reviewed in this paper. Taking the Sinian-Lower Cambrian strata in South China as objectives of a case study,we have deeply discussed the co-evolution mechanisms among the trace elements distribution patterns,variation of sedimentary environments,and the biological development. The comparative study on distribution characteristics of trace elements and isotopes of the Sinian-Early Cambrian strata and their possible implications for studying the Cambrian Biomass Explosion from perspectives at a basin or even a global scale are worth to be further comprehensively undertaken in near future. |
来源
|
矿物岩石地球化学通报
,2019,38(3):587-594 【核心库】
|
DOI
|
10.19658/j.issn.1007-2802.2019.38.070
|
关键词
|
微量元素
;
生物演化
;
古沉积环境
;
震旦-寒武纪
;
黑色岩系
|
地址
|
1.
中国科学院广州地球化学研究所, 有机地球化学国家重点实验室, 广州, 510640
2.
中国科学院大学, 北京, 100049
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1007-2802 |
学科
|
海洋学 |
基金
|
国家自然科学基金
;
国家“十三五”油气专项研究课题
|
文献收藏号
|
CSCD:6525116
|
参考文献 共
61
共4页
|
1.
Adams T D. Boron in holocene illites of the dovey estuary,wales,and its relationship to palaeosalinity in cyclothems.
Sedimentology,1965,4(3):189-195
|
CSCD被引
40
次
|
|
|
|
2.
Adegoke A K. Trace elements geochemistry of kerogen in upper cretaceous sediments,chad (Bornu) basin,northeastern Nigeria: Origin and paleo-redox conditions.
Journal of African Earth Sciences,2014,100:675-683
|
CSCD被引
5
次
|
|
|
|
3.
Algeo T J. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems.
Chemical Geology,2004,206(3/4):289-318
|
CSCD被引
255
次
|
|
|
|
4.
Algeo T J. Can marine anoxic events draw down the trace element inventory of seawater?.
Geology,2004,32(12):1057-1060
|
CSCD被引
25
次
|
|
|
|
5.
Algeo T J. Mo-total organic carbon covariation in modern anoxic marine environments: Implications for analysis of paleoredox and paleohydrographic conditions.
Paleoceanography and Paleoclimatology,2006,21(1):PA1016
|
CSCD被引
115
次
|
|
|
|
6.
Algeo T J. Trace-metal covariation as a guide to water-mass conditions in ancient anoxic marine environments.
Geosphere,2008,4(5):872-887
|
CSCD被引
17
次
|
|
|
|
7.
Algeo T J. Environmental analysis of paleoceanographic systems based on molybdenum-uranium covariation.
Chemical Geology,2009,268(3/4):211-225
|
CSCD被引
181
次
|
|
|
|
8.
Algeo T J. Paleoceanographic applications of trace-metal concentration data.
Chemical Geology,2012,324/325:6-18
|
CSCD被引
63
次
|
|
|
|
9.
Boyd P W. The biogeochemical cycle of iron in the ocean.
Nature Geoscience,2010,3(10):675-682
|
CSCD被引
31
次
|
|
|
|
10.
Chang C. Characterization of trace elements and carbon isotopes across the Ediacaran-Cambrian boundary in Anhui province,South China: Implications for stratigraphy and paleoenvironment reconstruction.
Journal of Asian Earth Sciences,2016,125:58-70
|
CSCD被引
6
次
|
|
|
|
11.
Gingele F X. Biogenic Barium as a proxy for paleoproductivity: Methods and limitations of application.
Use of Proxies in Paleoceanography,1999:345-364
|
CSCD被引
2
次
|
|
|
|
12.
Guo Q J. Trace element chemostratigraphy of two Ediacaran-Cambrian successions in South China: Implications for organosedimentary metal enrichment and silicification in the Early Cambrian.
Palaeogeography,Palaeoclimatology,Palaeoecology,2007,254(1/2):194-216
|
CSCD被引
91
次
|
|
|
|
13.
Guo Q J. REE and trace element patterns from organic-rich rocks of the Ediacaran-Cambrian transitional interval.
Gondwana Research,2016,36:94-106
|
CSCD被引
12
次
|
|
|
|
14.
Hatch J R. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone,Wabaunsee County,Kansas,U.S.A.
Chemical Geology,1992,99(1/3):65-82
|
CSCD被引
429
次
|
|
|
|
15.
Jiang G Q. Chemocline instability and isotope variations of the Ediacaran Doushantuo basin in South China.
Science in China Series D: Earth Sciences,2008,51(11):1560-1569
|
CSCD被引
11
次
|
|
|
|
16.
Jiang S Y. Extreme enrichment of polymetallic Ni-Mo-PGE-Au in Lower Cambrian black shales of South China: An Os isotope and PGE geochemical investigation.
Palaeogeography,Palaeoclimatology, Palaeoecology,2007,254(1/2):217-228
|
CSCD被引
77
次
|
|
|
|
17.
Jin C S. A highly redox-heterogeneous ocean in South China during the Early Cambrian (~ 529-514 Ma): Implications for biota-environment co-evolution.
Earth and Planetary Science Letters,2016,441:38-51
|
CSCD被引
41
次
|
|
|
|
18.
Jones B. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones.
Chemical Geology,1994,111(1/4):111-129
|
CSCD被引
721
次
|
|
|
|
19.
Kendall B. Uranium and molybdenum isotope evidence for an episode of widespread ocean oxygenation during the late Ediacaran Period.
Geochimica et Cosmochimica Acta,2015,156:173-193
|
CSCD被引
28
次
|
|
|
|
20.
Kimura H. Oceanic anoxia at the Precambrian-Cambrian boundary.
Geology,2001,29(11):995-998
|
CSCD被引
171
次
|
|
|
|
|