TC11钛合金中α″相和α′ 相的组织演变和显微硬度
Microstructure Evolution of α"-Phase and α'-Phase and Microhardness of TC11 Titanium Alloy
查看参考文献25篇
文摘
|
研究了TC11钛合金中α″相和α′相的显微组织转变和显微硬度。金相显微组织观察和X射线衍射分析的结果表明:随着固溶温度的提高α″相逐渐向α′ 相的晶体结构转变,α 相、α″相和α′相的显微组织演变规律为:α+α″,α+α″+α′,α+α′,α′。显微硬度测试的结果表明:在935~995℃固溶后显微硬度随着温度的提高先增大后减少,在985℃固溶后显微硬度达到峰值。综合分析显微组织影响合金显微硬度的机理:在935~985℃固溶后α′片层的厚度和间距变化的幅度小,β 转变组织长大缓慢,在β 转变组织中先后析出α″和α′相,随着固溶温度的提高α′片层的含量随之提高产生了相变强度效果,使其显微硬度提高;在985~995℃固溶后α′片层的厚度和间距明显增大,β 转变组织变粗大,α″相消失,α′相的含量降低,相变强化的效果减弱,使β 转变组织的显微硬度降低。 |
其他语种文摘
|
The effect of solution treatment temperature (STT) (ranging from 935°C to 995°C) on the microstructure evolution of α"-phase,α'-phase and microhardness of TC11 titanium alloy were investigated systematically by means of optical microscope,electron microscope with energy dispersive spectroscope,X-ray diffractometer and microhardness tester.Results show that the crystal structure of α"-phase gradually correspond to the crystal structure of the α ′ phase,and the phase composition of TC11 alloy changes with increasing STT (α+α″,α+α″ +α ′,α+α ′,α ′).Microhardness of the alloy solution treated in the temperature range from 935~985°C increased with the solution temperature,whereas the microhardness reduced for further increase of solution temperature up to the range of 985~995°C.Microstructural features resulting from different STTs were correlated with corresponding microhardness values.With the increment of STT the microhardness increased,because the thickness and spacing of α ′ -lamellae increased slowly and the β-transformed structure grew up slowly.Besides,due to phase transition strengthening(PTS) the α"-phase and α ′ -phase are precipitated in the β-transformed structure,and the α ′ -lamellae contents in the β -transformed microstructure increased,eventually reaching a maximum at 985°C.Above 985° C the microhardness decreased,because the thickness and spacing of α ′ -lamellae increased significantly and the β-transformed structure became coarser at the expense of α'-phase and α"- phase contents. |
来源
|
材料研究学报
,2019,33(6):443-451 【核心库】
|
DOI
|
10.11901/1005.3093.2018.474
|
关键词
|
金属材料
;
TC11钛合金
;
固溶处理
;
显微组织
;
显微硬度
|
地址
|
1.
中国科学院金属研究所, 沈阳, 110016
2.
中国科学技术大学材料科学与工程学院, 合肥, 230026
3.
中国科学院大学, 北京, 100049
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1005-3093 |
学科
|
金属学与金属工艺 |
文献收藏号
|
CSCD:6524842
|
参考文献 共
25
共2页
|
1.
Shang S. Transformation textures in an α+β, titanium alloy thin sheet.
Materials Science & Engineering A,2002,326(2):249
|
CSCD被引
3
次
|
|
|
|
2.
Lineberger L. Titanium aerospace alloy.
Advanced Materials & Processes,1998,153(5):45
|
CSCD被引
17
次
|
|
|
|
3.
Boyer R. Materials Properties Handbook: Titanium Alloys.
Materials properties handbook: titanium alloys,1994
|
CSCD被引
26
次
|
|
|
|
4.
Peng P W. Research of microstructure and mechanical behavior on duplex (α+β) Ti-4.8Al-2.5Mo-1.4V alloy.
Journal of Alloys & Compounds,2010,490(1/2):661
|
CSCD被引
4
次
|
|
|
|
5.
Yang H. Influence of gradient heat treatment on microstructure and microhardness in weld seam of Ti 3 Al/TC11 dual alloys.
Rare Metal Materials & Engineering,2010,39(1):22
|
CSCD被引
10
次
|
|
|
|
6.
Tan L. Microstructure and properties of electron beam welded joint of Ti-22Al-25Nb/TC11.
Aerospace Science & Technology,2010,14(5):302
|
CSCD被引
22
次
|
|
|
|
7.
Zhang X Y. Deformation behavior in isothermal compression of the TC11 titanium alloy.
Materials & Design,2010,31(6):2851
|
CSCD被引
12
次
|
|
|
|
8.
Lutjering G. Influence of processing on microstructure and mechanical properties of (α+β) titanium alloys.
Materials Science and Engineering: A,1998,243(1):32
|
CSCD被引
136
次
|
|
|
|
9.
Poondla N. A study of the microstructure and hardness of two titanium alloys: Commercially pure and Ti-6Al-4V.
Journal of Alloys & Compounds,2009,486(1/2):162
|
CSCD被引
19
次
|
|
|
|
10.
Mcquillan M K. Phase Transformations in titanium and its alloys.
Metallurgical Reviews,2013,8(1):41
|
CSCD被引
3
次
|
|
|
|
11.
Hao Y L. Young's modulus and mechanical properties of Ti-29Nb-13Ta-4.6Zr in relation to α″martensite.
Metallurgical & Materials Transactions A,2002,33(10):3137
|
CSCD被引
31
次
|
|
|
|
12.
Lin D J. Structure and properties of Ti-7.5Mo-xFe alloys.
Biomaterials,2002,23(8):1723
|
CSCD被引
12
次
|
|
|
|
13.
张喜燕.
钛合金及应用,2005
|
CSCD被引
177
次
|
|
|
|
14.
Yang R. Equilibria and microstructural evolution in the β/β'/γ' region of the Ni-Al-Ti system: modelling and experiment.
Acta Metallurgica Et Materialia,1992,40(7):1553
|
CSCD被引
3
次
|
|
|
|
15.
Zhang Y. Preparation of pure a″-phase titanium alloys with low moduli via high pressure solution treatment.
Journal of Alloys & Compounds,2017,695(1/2):45
|
CSCD被引
4
次
|
|
|
|
16.
Chung W C. Microstructure and notch properties of heat-treated Ti-4.5 Al-3V-2Mo-2Fe laser welds.
Materials transactions,2009,50(3):544
|
CSCD被引
11
次
|
|
|
|
17.
Esmaily M. Microstructural characterization and formation of α'martensite phase in Ti-6Al-4V alloy butt joints produced by friction stir and gas tungsten arc welding processes.
Materials & Design,2013,47:143
|
CSCD被引
10
次
|
|
|
|
18.
Rechtien J J. Phase transformations in uranium, plutonium, and neptunium.
Metallurgical and Materials Transactions B,1973,4(12):2755
|
CSCD被引
2
次
|
|
|
|
19.
黄孝瑛.
材料微观结构的电子显微学分析,2008
|
CSCD被引
15
次
|
|
|
|
20.
Inamura T. Composition dependent crystallography of α″-martensite in Ti-Nb-based β-titanium alloy.
Philosophical Magazine,2007,87(23):3325
|
CSCD被引
9
次
|
|
|
|
|