Coupled Bending–Bending–Axial–Torsional Vibrations of Rotating Blades
查看参考文献24篇
文摘
|
In this paper,the coupled bending–bending–axial–torsional free vibrations of rotating blades are investigated based on the Euler–Bernoulli beam model.The coupled partial differential equations governing flapwise,edgewise,axial and torsional motions are derived by the Hamilton's principle,wherein three types of velocity-dependent terms,namely static centrifugal terms,dynamic centrifugal terms and gyroscopic coupling terms,are focused.The ordinary differential equations are acquired by the Galerkin truncation,and the natural frequencies in all directions and complex mode shapes of the rotating blades are analyzed in detail.It is revealed that the three types of velocity-dependent terms have different effects on the natural frequencies.The natural frequencies are noticeably dependent on the rotating speed and preset angle,except for the axial vibration,which is almost immune to the preset angle.The complex modal motions are displayed by a series of positions of the central line and free-end cross section for different time instants,showing the coupled vibrations among different directions. |
来源
|
Acta Mechanica Solida Sinica
,2019,32(3):326-338 【核心库】
|
DOI
|
10.1007/s10338-019-00075-w
|
关键词
|
Rotating blades
;
Coupled vibrations
;
Gyroscopic coupling
;
Complex modes
;
Preset angle
|
地址
|
1.
College of Mechanical Engineering,Yangzhou University, Yangzhou, 225127
2.
College of Mechanical Engineering and Applied Electronics,Beijing University of Technology, Beijing Key Laboratory of Nonlinear Vibrations and Strength of Mechanical Engineering, Beijing, 100124
3.
Department of Engineering Mechanics,Shenyang Aerospace University, Shenyang, 110136
|
语种
|
英文 |
文献类型
|
研究性论文 |
ISSN
|
0894-9166 |
学科
|
力学 |
基金
|
国家自然科学基金
;
the Key Laboratory of Vibration and Control of Aero-Propulsion System Ministry of Education,Northeastern University
;
北京市自然科学基金
|
文献收藏号
|
CSCD:6522915
|
参考文献 共
24
共2页
|
1.
Hodges D H. A mixed variational formulation based on exact intrinsic equations for dynamics of moving beams.
Int J Solids Struct,1990,26:1253-1273
|
CSCD被引
28
次
|
|
|
|
2.
Cesnik C E S. Dynamic response of active twist rotor blades.
Smart Mater Struct,2001,10:62-76
|
CSCD被引
2
次
|
|
|
|
3.
Bendiksen O O. The effect of bending-torsion coupling on fan and compressor blade flutter.
ASME J Eng Power,1982,104:617-623
|
CSCD被引
11
次
|
|
|
|
4.
Cesnik C E S. VABS: A new concept for composite rotor blade cross-sectional modeling.
J Am Helicopter Soc,1997,42:27-38
|
CSCD被引
12
次
|
|
|
|
5.
Wright A D. Vibration modes of centrifugally stiffened beams.
ASME J Appl Mech,1982,49:197-202
|
CSCD被引
14
次
|
|
|
|
6.
Naguleswaran S. Lateral vibration of a centrifugally tensioned uniform Euler-Bernoulli beam.
J Sound Vib,1994,176:613-624
|
CSCD被引
8
次
|
|
|
|
7.
Du H. A power-series solution for vibration of a rotating Timoshenko beam.
J Sound Vib,1994,175:505-523
|
CSCD被引
8
次
|
|
|
|
8.
Sanchezhubert J. Coupling of bending-torsion-traction for anisotropic beams with heterogeneous section.
Cr Acad Sci Ii,1991,312:337-344
|
CSCD被引
1
次
|
|
|
|
9.
Banerjee J R. Free vibration of centrifugally stiffened uniform and tapered beams using the dynamic stiffness method.
J Sound Vib,2000,233:857-875
|
CSCD被引
13
次
|
|
|
|
10.
Chen W R. Transverse vibrations of a rotating twisted Timoshenko beam under axial loading.
ASME J Vib Acoust,1993,115:285-294
|
CSCD被引
2
次
|
|
|
|
11.
Genta G. A harmonic finite element for the analysis of flexural, torsional and axial rotordynamic behavior of blade arrays.
J Sound Vib,1997,207:693-720
|
CSCD被引
4
次
|
|
|
|
12.
Sivaneri N T. Dynamic stability of a rotor blade using finite-element analysis.
AIAA J,1982,20:716-723
|
CSCD被引
8
次
|
|
|
|
13.
Yang X D. Linear and nonlinear modal analysis of the axially moving continua based on the invariant manifold method.
Acta Mech,2017,228:465-474
|
CSCD被引
3
次
|
|
|
|
14.
Lin S C. Vibration analysis of a rotating Timoshenko beam.
J Sound Vib,2001,240:303-322
|
CSCD被引
11
次
|
|
|
|
15.
Lee S Y. Free vibrations of a rotating inclined beam.
ASME J Appl Mech,2007,74:406-414
|
CSCD被引
2
次
|
|
|
|
16.
Banerjee J R. Dynamic stiffness method for inplane free vibration of rotating beams including Coriolis effects.
J Sound Vib,2014,333:7299-7312
|
CSCD被引
7
次
|
|
|
|
17.
Chung J. Dynamic analysis of a rotating cantilever beam by using the finite element method.
J Sound Vib,2002,249:147-164
|
CSCD被引
21
次
|
|
|
|
18.
Kim H. Dynamic model for free vibration and response analysis of rotating beams.
J Sound Vib,2013,332:5917-5928
|
CSCD被引
7
次
|
|
|
|
19.
Pesheck E. Accurate reduced-order models for a simple rotor blade model using nonlinear normal modes.
Math Comput Model,2001,33:1085-1097
|
CSCD被引
1
次
|
|
|
|
20.
Huang C L. Free vibration analysis of rotating Euler beams at high angular velocity.
Comput Struct,2010,88:991-1001
|
CSCD被引
8
次
|
|
|
|
|