基于终身机器学习的主题挖掘与评分预测联合模型
Topic Mining and Ratings Prediction Joint Model Based on Lifelong Machine Learning
查看参考文献16篇
文摘
|
为充分利用历史知识,提高评分预测精度,基于终身机器学习(LML)机制提出一种同时挖掘用户评分和评论的推荐模型。在执行任务时积累知识并用于后续任务的训练,提高评分预测精度。在真实数据集上的实验结果表明,与无LML 能力的模型相比,该模型预测评分的均方误差降低5.4‰,且随着知识的积累,误差不断降低,提高了主题词语分类的精度。 |
其他语种文摘
|
In order to make full use of the historical knowledge and improve the accuracy of rating prediction,a recommendation model based on Lifelong Machine Learning (LML) is proposed to mine both user ratings and comments.The model accumulates knowledge from previous tasks and utilizes it in future tasks to help improve the rating prediction accuracy.Experimental results on real datasets show that compared with models without LML ability,the mean square error of the predicted ratings of this model is reduced by 5.4‰,and with the accumulation of knowledge,its error is continuely dropped.The accuracy of topic word classification results is improved. |
来源
|
计算机工程
,2019,45(6):237-241,248 【扩展库】
|
DOI
|
10.19678/j.issn.1000-3428.0051131
|
关键词
|
文本主题模型
;
推荐算法
;
终身机器学习
;
评分预测
;
协同过滤
|
地址
|
大连理工大学电子信息与电气工程学部, 辽宁, 大连, 116024
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-3428 |
学科
|
自动化技术、计算机技术 |
基金
|
国家自然科学基金重点项目
;
中央高校基本科研业务费专项资金
|
文献收藏号
|
CSCD:6513231
|
参考文献 共
16
共1页
|
1.
金紫嫣. 一种带标签的协同过滤广告推荐算法.
计算机工程,2018,44(4):236-242,247
|
CSCD被引
3
次
|
|
|
|
2.
Mcauley J. From amateurs to connoisseurs: modeling the evolution of user expertise through online reviews.
Proceedings of the 22nd International Conference on World Wide Web,2015:897-908
|
CSCD被引
1
次
|
|
|
|
3.
Mnih A. Probabilistic matrix factorization.
Proceedings of the 20th International Conference on Neural Information Processing Systems,2008:1257-1264
|
CSCD被引
2
次
|
|
|
|
4.
Wang Chong. Collaborative topic modeling for recommending scientific articles.
Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,2011:448-456
|
CSCD被引
48
次
|
|
|
|
5.
Mcauley J. Hidden factors and hidden topics: understanding rating dimensions with review text.
Proceedings of the 7th ACM Conference on Recommender Systems,2013:165-172
|
CSCD被引
32
次
|
|
|
|
6.
Diao Qiming. Jointly modeling aspects,ratings and sentiments for movie recommendation.
Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,2014:193-202
|
CSCD被引
5
次
|
|
|
|
7.
Ling Guang. Ratings meet reviews,a combined approach to recommend.
Proceedings of the 8th ACM Conference on Recom-mender Systems,2014:105-112
|
CSCD被引
1
次
|
|
|
|
8.
Chen Zhiyuan.
Lifelong machine learning,2016
|
CSCD被引
1
次
|
|
|
|
9.
Hu Guangneng. A synthetic approach for recommendation: combining ratings,social relations,and reviews.
Proceedings of the 24th International Conference on Artificial Intelligence,2015:1756-1762
|
CSCD被引
1
次
|
|
|
|
10.
Thrun S. Is learning the n-th thing any easier than learning the first.
Proceedings of the 8th International Conference on Neural Information Processing Systems,1996:640-646
|
CSCD被引
2
次
|
|
|
|
11.
Fei Geli. Learning cumulatively to become more knowledgeable.
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,2016:1565-1574
|
CSCD被引
2
次
|
|
|
|
12.
Shu Lei.
Lifelong-rl: lifelong relaxation labeling for separating entities and aspects in opinion targets,2018
|
CSCD被引
1
次
|
|
|
|
13.
Chen Zhiyuan. Topic modeling using topics from many domains,lifelong learning and big data.
Proceedings of International Conference on Machine Learning,2014:703-711
|
CSCD被引
1
次
|
|
|
|
14.
Kapoor A. Principles of lifelong learning for predictive user modeling.
Proceedings of International Conference on User Modeling,2007:37-46
|
CSCD被引
1
次
|
|
|
|
15.
Liu Qian.
Improving opinion aspect extraction using semantic similarity and aspect associations,2018
|
CSCD被引
1
次
|
|
|
|
16.
Blei D M. Latent dirichlet allocation.
Journal of Machine Learning Research,2003,3:993-1022
|
CSCD被引
1337
次
|
|
|
|
|