中性大气边界层中风力机的湍流演化及叶根载荷分析
Evolution of turbulence in a wind turbine flow field with a neutral atmospheric boundary layer and an analysis of the blade root load
查看参考文献33篇
文摘
|
针对一台外场试验风电机组,采用大涡模拟(large eddy simulation, LES)耦合致动线模型的方法,构建了中性大气边界层和风力机风轮的气动耦合求解模型,模拟风力机在中性大气边界层中的流场.通过连续小波分析、频谱分析和相关性分析,研究了中性大气边界层中风力机前、后的湍流演化过程及其与叶根载荷的相关性.研究发现,自然来流从风轮前1D(D为风轮直径)处运动到后1D处时,大气中的湍流强度逐渐增大;在风轮平面处出现了较强的小尺度湍流结构,这些小尺度的湍流结构在向下游运动过程中不断耗散,并在风轮后1D处能量基本耗散殆尽;叶尖位置处的高频湍流出现频率约为1.82 Hz,此频率正好与叶片通过频率相对应.风力机的叶根挥舞载荷对大气中的湍流结构响应明显,低频湍流结构对叶根挥舞载荷的低频段影响显著,高频湍流结构对叶根挥舞载荷的高频段影响明显;叶尖高频湍流结构相对于叶根高频湍流结构,频率更高,能量更大,其对叶根挥舞载荷高频段的影响更为明显;同时,叶尖高频湍流与叶根挥舞载荷的高频部分表现出了一致的周期性变化规律. |
其他语种文摘
|
In this study, a neutral atmospheric boundary layer and wind turbine blades were constructed in a large eddy simulation and actuator line model for conducting a field experiment of a wind turbine. Further, the flow field of the wind turbine was simulated in a neutral atmospheric boundary layer. The evolution of the turbulence in the front and back of the rotor with a neutral atmospheric boundary layer and its correlation with the load were studied by analyzing the continuous wavelets, the spectrum, and the correlation. The results indicate that the coherent structure of the turbulence in the neutral atmospheric boundary layer becomes stronger from one-diameter (1D) front of the rotor plane to 1D back of it. The coherent structure of the turbulence in inflow is affected by the rotation of the rotor. Subsequently, strong small-scale turbulence structures appear in the rotor plane, which are continuously dissipated in the wind direction. The turbulent energy with small scales at 1D back of rotor is feeble, and the turbulence mainly moves on a large scale. The frequency of the small-scale turbulence is approximately 1.82 Hz at the tip, which corresponds to the passing frequency of the blade and is mainly generated because of the rotation of the rotor. The flapwise load of the blade root is high when the turbulent energy is high. The results of wavelet analysis denote that the turbulence structure at the monitoring points has a good relation with the flapwise load of the blade root, and the flapwise load of the blade root of the wind turbine has obvious response to the turbulent structure of the atmosphere. A multi-resolution analysis of two points at the center and tip of the rotor and the flapwise load of the blade root denotes that the low-frequency turbulent structure at the center of the rotor (B3-B6 frequency band) is dependent on the low-frequency flapwise load of the blade root, whereas the high-frequency turbulent structure (B1-B2 frequency band) has no obvious corresponding relation with the flapwise load of the blade root. The high-frequency turbulent structure at the tip (B1-B2 frequency band) is related to the high-frequency flapwise load of the blade root, whereas the low-frequency turbulent structure (B3-B6 frequency band) has no obvious corresponding relation with the flapwise load of the blade root. Therefore, the low-frequency turbulence structure significantly influences the low-frequency band of the flapwise load of the blade root, whereas the high-frequency turbulence structure significantly influences the high-frequency band of the flapwise load of the blade root. When compared with the high-frequency turbulent structure at the blade root, the highfrequency turbulent structure has a higher frequency and a higher energy at the blade tip, and its influence on the highfrequency band of the flapwise load of the blade root is more obvious, exhibiting a consistent regular periodic variation. |
来源
|
科学通报
,2019,64(17):1832-1843 【核心库】
|
DOI
|
10.1360/N972019-00213
|
关键词
|
中性大气边界层
;
叶根载荷
;
大涡模拟
;
致动线模型
;
相关性
;
频谱分析
|
地址
|
1.
兰州理工大学能源与动力工程学院, 兰州, 730050
2.
甘肃省风力机工程技术研究中心, 甘肃省风力机工程技术研究中心, 兰州, 730050
3.
甘肃省流体机械及系统重点实验室, 甘肃省流体机械及系统重点实验室, 兰州, 730050
4.
上海交通大学船舶与海洋工程学院, 上海, 200240
5.
中国科学院力学研究所, 北京, 100080
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0023-074X |
学科
|
电子技术、通信技术 |
基金
|
国家973计划
;
国家自然科学基金
|
文献收藏号
|
CSCD:6511639
|
参考文献 共
33
共2页
|
1.
Mandell J F.
Fatigue of Composite Materials and Substructures for Wind Turbine Blades. In: Office of Scientific and Technical Information Technical Reports,2002
|
CSCD被引
1
次
|
|
|
|
2.
Balduzzi F. Microeolic turbines in the built environment: Influence of the installation site on the potential energy yield.
Renew Energy,2012,45:163-174
|
CSCD被引
3
次
|
|
|
|
3.
Riziotis V A. Fatigue loads on wind turbines of different control strategies operating in complex terrain.
J Wind Eng Ind Aerod,2000,85:211-240
|
CSCD被引
6
次
|
|
|
|
4.
Ledo L. Roof mounting site analysis for micro-wind turbines.
Renew Energy,2011,36:1379-1391
|
CSCD被引
8
次
|
|
|
|
5.
Talavera M. Experimental study of turbulence intensity influence on wind turbine performance and wake recovery in a low-speed wind tunnel.
Renew Energy,2017,109:363-371
|
CSCD被引
6
次
|
|
|
|
6.
Li D S. Investigation of horizontal-axis wind turbine (HAWT) blade three-dimensional rotational effect based on field experiments.
Appl Math Mech-Engl,2016,37(Suppl):31-42
|
CSCD被引
1
次
|
|
|
|
7.
Lee S. A numerical study of atmospheric and wake turbulence impacts on wind turbine fatigue loadings.
J Sol Energy Eng,2013,135:031001
|
CSCD被引
7
次
|
|
|
|
8.
Churchfield M J. A numerical study of the effects of atmospheric and wake turbulence on wind turbine dynamics.
J Turbul,2012,13:1-32
|
CSCD被引
18
次
|
|
|
|
9.
Frandsen S. Change in fatigue and extreme loading when moving wind farms offshore.
Wind Eng,1997,21:197-214
|
CSCD被引
1
次
|
|
|
|
10.
Mouzakis F. Fatigue loading parameter identification of a wind turbine operating in complex terrain.
J Wind Eng Ind Aerod,1999,82:69-88
|
CSCD被引
4
次
|
|
|
|
11.
Lavely A. Space-time loadings on wind turbine blades driven by atmospheric boundary layer turbulence.
49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition,2011:635
|
CSCD被引
1
次
|
|
|
|
12.
Storey R C. Large eddy simulation of dynamically controlled wind turbines in an offshore environment.
Wind Energy,2013,16:845-864
|
CSCD被引
3
次
|
|
|
|
13.
Sim C. A comparison of wind turbine load statistics for inflow turbulence fields based on conventional spectral methods and large eddy simulation.
48th AIAA Aerospace Sciences Meeting and Exhibit,2010:829
|
CSCD被引
1
次
|
|
|
|
14.
Andersen S J. Statistics of LES simulations of large wind farms.
J Phys-Conf Ser,2016,753:032002
|
CSCD被引
1
次
|
|
|
|
15.
Xu C D. A weighted linear regression model for precipitation spatial interpolation in altiplano and mountain area.
Geo-Inf Sci,2008,10:14-19
|
CSCD被引
1
次
|
|
|
|
16.
罗涛. 复杂下垫面近地面层湍流特征的研究.
自然科学:南京大学学报,2008,44:273-279
|
CSCD被引
4
次
|
|
|
|
17.
Liu G. Multi-scale fractal characteristics of atmospheric boundary-layer turbulence.
Adv Atmos Sci,2001,18:787-792
|
CSCD被引
1
次
|
|
|
|
18.
Kelley N D.
Impact of Coherent Turbulence on Wind Turbine Aeroelastic Response and its Simulation. Technical Report,2005
|
CSCD被引
1
次
|
|
|
|
19.
Kelley N D. Using wavelet analysis to assess turbulence/rotor interactions.
Wind Energy,2010,3:121-134
|
CSCD被引
2
次
|
|
|
|
20.
Kelley N D.
Turbulence-Turbine Interaction: The Basis for the Development of the TurbSim Stochastic Simulator. Technical Report,2011
|
CSCD被引
1
次
|
|
|
|
|