基于图形处理器的高速中值滤波算法
High speed median filtering algorithm based on graphics processing unit
查看参考文献12篇
文摘
|
针对中央处理器(CPU)平台中值滤波算法在实际应用中运算速率低且实时信号处理性能较差的问题,提出了一种基于图形处理器(GPU)的并行高速中值滤波算法。该算法采用统一计算设备架构(CUDA)并行架构对大规模数据处理进行了优化,从而有效提高了中值滤波算法的计算效率,实现了中值滤波的实时数据处理。通过构建GPU 可任意伸缩的动态数组、优化多维索引的线性化方法解决了GPU 动态显存空间分配问题。仿真试验结果表明:基于TITAN X GPU 的5×5中值滤波,对4096像素×4096像素的图像处理计算速度比CPU 平台提高了438倍。在同等计算规模条件下GPU 高速中值滤波算法可大大提高计算性能。 |
其他语种文摘
|
Low computational rate and poor performance in real-time signal processing are the main problems for the median filtering algorithm in the practical applications.This paper proposed a high-speed parallel median filtering algorithm based on Graphics Processing Unit (GPU).The algorithm uses Compute Unified Device Architecture (CUDA) to optimize large-scale data processing and it is implemented on NVIDIA GPUs to improved its computational efficiency.The GPU ' s dynamic memory space is allocated by constructing GPU-scalable dynamic array and optimization of multidimensional index linearization methods.Experiment results show that,the 5×5 median filtering based on TITAN X GPU is approximately 438x faster than CPU algorithm for processing of 4096×4096 pixel images.The GPU based median filtering can greatly improve the computing performance of algorithm under the same computing conditions. |
来源
|
吉林大学学报. 工学版
,2019,49(3):979-985 【核心库】
|
DOI
|
10.13229/j.cnki.jdxbgxb20180050
|
关键词
|
信息处理技术
;
信号处理
;
中值滤波
;
统一计算设备架构
;
图形处理器
;
并行算法
|
地址
|
1.
中国科学院新疆天文台, 乌鲁木齐, 830011
2.
中国科学院大学, 北京, 100049
3.
中国科学院射电天文重点实验室, 中国科学院射电天文重点实验室, 南京, 210008
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1671-5497 |
学科
|
电子技术、通信技术 |
基金
|
国家973计划
;
国家自然科学基金项目
;
中国科学院青年创新促进会项目
;
中国科学院天文台站设备更新及重大仪器设备运行专项基金项目
|
文献收藏号
|
CSCD:6506389
|
参考文献 共
12
共1页
|
1.
Wozniak M. Can we process 2D images using artificial bee colony?.
International Conference on Artificial Intelligence and Soft Computing,2015:660-671
|
CSCD被引
1
次
|
|
|
|
2.
赵海英. 基于多尺度Meanshift图像去噪算法.
吉林大学学报:工学版,2014,44(5):1417-1422
|
CSCD被引
5
次
|
|
|
|
3.
许景波. 表面测量中高斯滤波中线的有理逼近实现.
吉林大学学报:工学版,2014,44(5):1347-1352
|
CSCD被引
2
次
|
|
|
|
4.
Juhola M. Comparison of algorithms for standard median filtering.
IEEE Transactions on Signal Processing,1991,39(1):204-208
|
CSCD被引
2
次
|
|
|
|
5.
Tomasi C. Bilateral filtering for gray and color images.
Sixth International Conference on Computer Vision,1998:839-846
|
CSCD被引
34
次
|
|
|
|
6.
Jwo D J. Adaptive fuzzy strong tracking extended Kalman filtering for GPS navigation.
IEEE Sensors Journal,2007,7(5):778-789
|
CSCD被引
40
次
|
|
|
|
7.
王宇新. 基于FPGA的快速中值滤波算法.
计算机应用研究,2009,26(1):224-226
|
CSCD被引
6
次
|
|
|
|
8.
Owens J D. GPU computing.
Proceedings of the IEEE,2008,96(5):879-899
|
CSCD被引
81
次
|
|
|
|
9.
Ranka S. Efficient serial and parallel algorithms for median filtering.
IEEE Transactions on Signal Processing,1991,39(6):1462-1466
|
CSCD被引
4
次
|
|
|
|
10.
Garland Michael. Parallel computing experiences with CUDA.
IEEE Micro,2008,28(4):13-27
|
CSCD被引
26
次
|
|
|
|
11.
Ryoo S. Optimization principles and application performance evaluation of a multithreaded GPU using CUDA.
Proceedings of the 13th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,2008:73-82
|
CSCD被引
9
次
|
|
|
|
12.
Battiato P S.
High performance median filtering algorithm based on NVIDIA GPU computing,2018
|
CSCD被引
1
次
|
|
|
|
|