硅基锂离子电池负极材料的容量衰减及改进研究
Improvement of capacity fading of Si-based cathode for lithium-ion battery
查看参考文献31篇
|
文摘
|
硅材料的比容量(Li_(15)Si_4,3590 mAh/g)是已商用化的石墨负极(LiC_6,372 mAh/g)的10倍,硅负极的商业化可有效提高单体电芯的容量,已成为当前研究热点。然而,由于硅负极材料在充放电循环时存在400%的体积膨胀,容易导致电极材料粉化开裂而从集流体上剥落,使得活性物质与活性物质、集流体之间失去电接触,同时不断形成新的固体电解质相界面膜(SEI膜),最终导致电化学性能的恶化。本研究从硅负极材料的储锂机理出发,提出硅负极材料锂化/脱锂化产生的体积膨胀效应导致的粉化开裂和SEI膜不稳定问题的最新调控方法和研究方向,为硅负极材料的研究应用提供支持。 |
|
其他语种文摘
|
Silicon has gained a huge attention in the last decade,because it has a theoretical capacity(3590 mAh·g~(-1) for Li_(15)Si_4 phase)of~10 times higher than that of representative graphite(372 mAh·g~(-1) for LiC_6),which attribute to improve the single cell capacity heavily.However,it suffers from fast capacity fading of electrode,loss of contact with the current collector,and loss of active material contact due to continuous volume expansion and contraction of up to 400%during cycling.The mechanism of lithium storage on the issue that the latest technologies and the research progress of large volume effect during alloying/dealloying with lithium led to electrode pulverization cracking and unstable solid electrolyte interface(SEI)layer were discussed,which can provide research support for the applying of silicon cathode materials. |
|
来源
|
化工新型材料
,2019,47(5):222-226 【扩展库】
|
|
关键词
|
锂离子电池
;
负极材料
;
体积膨胀
;
SEI膜
|
|
地址
|
1.
兰州理工大学, 甘肃省部共建有色金属先进加工与再利用国家重点实验室, 兰州, 730050
2.
兰州理工大学材料科学与工程学院, 兰州, 730050
3.
国家镍钴新材料工程技术研究中心, 国家镍钴新材料工程技术研究中心, 兰州, 730010
|
|
语种
|
中文 |
|
文献类型
|
研究性论文 |
|
ISSN
|
1006-3536 |
|
学科
|
电工技术 |
|
基金
|
国家自然科学基金
|
|
文献收藏号
|
CSCD:6506033
|
参考文献 共
31
共2页
|
|
1.
Jing S L. Face-to-face contact and openvoid coinvolved Si/C nanohybrids lithium-ion battery anodes with extremely long cycle life.
Adv Funct Mater,2015,25(33):5395-5401
|
CSCD被引
12
次
|
|
|
|
|
2.
Goodenouge J B. The li-ion rechargeable battery:a perspective.
J Am Chem. Soc,2013,135(4):1167-1176
|
CSCD被引
594
次
|
|
|
|
|
3.
戴剑锋. LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2正极材料中SO_4~(2-)的危害及脱除.
兰州理工大学学报,2016,42(4):169-172
|
CSCD被引
4
次
|
|
|
|
|
4.
Xie X Q. Two-dimensional layered compound based anode materials for lithium-ion batteries and sodium-ion batteries.
J Colloid Interface Sci,2017,499:17-32
|
CSCD被引
6
次
|
|
|
|
|
5.
Lim S. Improvement of rate capability by graphite foam anode for Li secondary batteries.
J Power Sources,2017,355:164-170
|
CSCD被引
7
次
|
|
|
|
|
6.
畅波. 核壳结构Si/C复合负极材料的制备与储锂性能研究.
化工新型材料,2018,46(2):79-82
|
CSCD被引
1
次
|
|
|
|
|
7.
王磊. 大米淀粉硬碳负极材料的制备及其电化学性能研究.
化工新型材料,2018,46(1):229-232
|
CSCD被引
1
次
|
|
|
|
|
8.
田华玲. 兰炭基活性炭材料的制备及其电化学性能.
兰州理工大学学报,2015,41(5):28-31
|
CSCD被引
1
次
|
|
|
|
|
9.
朱彦荣. 锂离子电池MLi_2Ti_6O_(14)(M=2Na,Sr,Ba)负极材料的研究进展.
化工新型材料,2018,46(2):35-38
|
CSCD被引
2
次
|
|
|
|
|
10.
Lai S C. Solid lithium-silicon electrode.
J Electrochem Soc,1976,123(8):1196-1197
|
CSCD被引
2
次
|
|
|
|
|
11.
Wilson A M. Nanodispersed silicon in pregraphitic carbons.
J App Phy,1995,77(6):2363-2369
|
CSCD被引
10
次
|
|
|
|
|
12.
Obrovac M N. Reversible cycling of crystalline silicon powder batteries and energy storage.
J Electrochem Soc,2007,154(2):A103-A108
|
CSCD被引
42
次
|
|
|
|
|
13.
Pan L. Facile synthesis of yolkshell structured Si-C nanocomposites as anodes for lithiumion batteries.
Chem Commun,2014,50(44):5878-5880
|
CSCD被引
11
次
|
|
|
|
|
14.
He Y. Shape evolution of patterned amorphous and polycrystalline silicon microarray thin film electrodes caused by lithium insertion and extraction.
J Power Sources,2012,216(11):131-138
|
CSCD被引
20
次
|
|
|
|
|
15.
Huggins R A. Lithium alloy negative electrodes.
J Power Sources,1999,81/82(1/2):13-19
|
CSCD被引
51
次
|
|
|
|
|
16.
Hatchard T. In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon.
J Electrochem Soc,2004,151(6):A838-A842
|
CSCD被引
39
次
|
|
|
|
|
17.
Limthongkul P. Electrochemically-driven solid-state amorphization in lithium-silicon alloys and implications for lithium storage.
Acta Mater,2003,1(4):1103-1113
|
CSCD被引
30
次
|
|
|
|
|
18.
Zhang H W J. A review of the electrochemical performance of alloy anodes for lithium-ion batteries.
J Power Sources,2011,196(1):13-24
|
CSCD被引
1
次
|
|
|
|
|
19.
David L. Silicon oxycarbide glass-graphene composite paper electrode for long-cycle lithium-ion batteries.
Nat Commun,2016,7:10998
|
CSCD被引
11
次
|
|
|
|
|
20.
Lee B S. Fabrication of Si core/C shell nanofibers and their electrochemical performances as a lithium-ion battery anode.
J Power Sources,2012,206(2):267-273
|
CSCD被引
11
次
|
|
|
|
|