外源茉莉酸甲酯对紫花苜蓿尖孢镰刀菌根腐病抗病性的作用
Effect of methyl jasmonate on resistance of alfalfa root rot caused by Fusarium oxysporum
查看参考文献46篇
文摘
|
本研究以紫花苜蓿品种、茉莉酸甲酯(Methyl Jasmonnate,MeJA)浓度、MeJA诱导天数为处理因素,按照四因素三水平[L9(34) ]的正交试验设计,通过测定发病情况和相关生理生化指标来探究MeJA对紫花苜蓿尖孢镰刀菌根腐病抗病性的作用。结果表明,施用外源MeJA能够降低甘农3号、龙牧803和中苜一号的发病率和病情指数。外源MeJA诱导处理可增强超氧化物歧化酶和苯丙氨酸解氨酶的活性,但对过氧化物酶的影响相对较小;经诱导处理后地上生物量鲜重和干重也有显著增加,而可溶性蛋白质的含量却显著降低。方差分析和极差分析结果表明,MeJA诱导处理存在品种、诱导浓度和诱导天数间的差异,其中MeJA浓度是影响各测定指标的主要因素。通过因子综合分析得出,本次研究中甘农3号,用MeJA 0.1 mg·mL~(-1)诱导处理并同时接种对尖孢镰刀菌引起的根腐病的抑制效果最佳。 |
其他语种文摘
|
To evaluate effect of methyl jasmonate (MeJA) on the resistance to alfalfa root rot caused by Fusarium oxysporum,an [L9(34) ]orthogonal matrix experiment was performed,including alfalfa varieties,MeJA concentration and days from MeJA treatment to inoculation,and each factor had three levels to determine the incidence and related physiological parameter. These results showed that the incidence and the disease index of Gannong No.3,Longmu 803 and Zhongmu No.1 were decreased after exogenous MeJA treatment. MeJA treatment also enhanced the activity of superoxide dismutase and phenylalanine ammonia layase,but there was a slight influence on peroxidase. The weight of fresh and dry shoot had increased significantly after MeJA treatment, while the content of soluble protein of treatment groups was decreased markedly. Variance analysis and range analysis indicated that the efficiency of MeJA was affected by alfalfa varieties,MeJA concentration and days from MeJA treatment to inoculation,and MeJA concentration was the most important factor. Finally,the optimal inhibition conditions was Gannong No. 3,MeJA 0.1 mg·mL~(-1),inoculation and treatment simultaneously. |
来源
|
植物病理学报
,2019,49(3):379-390 【核心库】
|
DOI
|
10.13926/j.cnki.apps.000297
|
关键词
|
MeJA
;
苜蓿根腐病
;
尖孢镰刀菌
;
抗病性
|
地址
|
1.
西北农林科技大学草业与草原学院, 杨凌, 712100
2.
甘肃酒泉大业种业有限责任公司, 酒泉, 735000
3.
中国农业科学院北京畜牧兽医研究所, 北京, 100193
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0412-0914 |
学科
|
植物保护 |
基金
|
国家重点研发计划
;
国家自然科学基金
|
文献收藏号
|
CSCD:6503521
|
参考文献 共
46
共3页
|
1.
Guo Y X. Study on the pathogenicity of Fusarium acuminatum and disease resistance of alfalfa varieties (in Chinese).
植物病理学报,2018,48(1):108-118
|
CSCD被引
1
次
|
|
|
|
2.
Fatemeh N. Mining alfalfa (Medicago sativa L.) nodules for salinity tolerant non-rhizobial bacteria to improve growth of alfalfa under salinity stress.
Ecotoxicology and Environment Safety,2018,162(2):129-138
|
CSCD被引
8
次
|
|
|
|
3.
Couture L. Fusarium root and crown rot in alfalfa subjected to autumn harvests.
Canadian Journal of Plant Science,2002,82(3):621-624
|
CSCD被引
10
次
|
|
|
|
4.
Wang D C. Isolation and identification of the pathogens causing root rot disease of Medicago sativa (in Chinese).
草业科学,2005,22(10):78-81
|
CSCD被引
1
次
|
|
|
|
5.
Cao L X. Identification of the Pathogens Causing Root Rot of Alfalfa in Inner Mongolia.
华北农学报,2008,23(6):105-107
|
CSCD被引
6
次
|
|
|
|
6.
Li K M. Study on the anastomosis groups of Rhizoctonia solani isolated from lucerne in Xinjiang and their pathogenicity (in Chinese).
草业科学,2009,20(5):151-154
|
CSCD被引
2
次
|
|
|
|
7.
Xin B B. Evaluation on disease resistance of different varieties of alfalfa to Fusarium oxysporum (in Chinese).
中国草地学报,2016,38(1):74-80
|
CSCD被引
2
次
|
|
|
|
8.
Ramirez-Suero M. A study on the susceptibility of the model legume plant Medicago truncatula to the soil-borne pathogen Fusarium oxysporum.
European Journal of Plant Pathology,2010,126(4):517-530
|
CSCD被引
3
次
|
|
|
|
9.
Cong L. First report of root rot disease caused by Fusarium proliferatum on alfalfa in China.
Plant Disease,2016,100(12):2526
|
CSCD被引
1
次
|
|
|
|
10.
Fu Z Q. Systemic acquired resistance: Turning local infection into global defense.
Annual Review of Plant Biology,2013,64:839-863
|
CSCD被引
60
次
|
|
|
|
11.
Pieterse C M J. Induced systemic resistance by beneficial microbes.
Annual Review of Phytopathology,2014,52(1):347-375
|
CSCD被引
80
次
|
|
|
|
12.
Sun C. Chitin isolated from yeast cell wall induces the resistance of tomato to Botrytis cinereal.
Carbohydrate Polymers,2018,199(2):341-352
|
CSCD被引
5
次
|
|
|
|
13.
Pieterse C M J. Salicylic acid-independent plant defence pathways.
Trends in Plant Science,1999,4(2):52-58
|
CSCD被引
26
次
|
|
|
|
14.
Truman W. Arabidopsis systemic immunity uses conserved defense signaling pathways and is mediated by jasmonates.
Proceedings of the National Academy of Sciences,2007,104(3):1075-1080
|
CSCD被引
32
次
|
|
|
|
15.
Mur L A J. Integrating nitric oxide into salicylic acid and jasmonic acid/ethylene plant defense pathways.
Frontiers in Plant Science,2013(4):215-222
|
CSCD被引
1
次
|
|
|
|
16.
Sewedan E. Effect of methyl jasmonate and salicylic acid on the production of Gladiolus grandifloras L.
Nature and Science,2018,16(6):40-47
|
CSCD被引
1
次
|
|
|
|
17.
Garde-Cerdan T. Influence of methyl jasmonate foliar application to vineyard on grape volatile composition over three consecutive vintages.
Food Research International,2018,112(2):274-283
|
CSCD被引
5
次
|
|
|
|
18.
Cheong J J. Methyl jasmonate as a vital substance in plants.
Trends in Genetics,2003,19(7):409-413
|
CSCD被引
65
次
|
|
|
|
19.
Buzi A. Induction of resistance in melon seedlings against soil-borne fungal pathogens by gaseous treatments with methyl jasmonate and ethylene.
Journal of Phytopathology,2010,152(8/9):491-497
|
CSCD被引
4
次
|
|
|
|
20.
Buhrow L M. Exogenous abscisic acid and gibberellic acid elicit opposing effects on Fusarium graminearum infection in wheat.
Phytopathology,2016,106(9):1-12
|
CSCD被引
1
次
|
|
|
|
|