阵列光束在各向异性湍流大气传输时的光束漂移
Beam wander of array beams propagating through anisotropic turbulent atmosphere
查看参考文献20篇
文摘
|
基于拓展的惠更斯-菲涅尔原理,推导出了圆对称阵列光束在各项异性湍流大气中传输的束腰宽度和光束漂移解析表达式,并对此表达式进行了数值模拟.结果表明:圆对称阵列光束在各项异性湍流大气传输时,阵列光束的高斯光束个数对光束漂移的影响较小,而高斯阵列所围成圆环的半径对光束漂移的影响较大,半径越大,阵列光束的漂移越小;各项异性湍流大气的幂律参数和各项异性因子也是影响光束漂移的主要因素.在相同条件下,阵列光束受到各项异性湍流大气的扰动比高斯光束小. |
其他语种文摘
|
Based on the extended Huygens-Fresnel principle,the analytical expressions of the beam width and beam wander for radial array beams in anisotropic turbulent atmosphere are derived.The numerical analysis results show that the beam wander of radial array beams influenced by the number of Gaussian beam is small,but the radius of the ring is large.There is small beam wander for radial array beams with the large radius of the ring.Beam wander is also mainly affected by the power law and anisotropic factor in anisotropic turbulence.Under the same conditions,laser array beams in anisotropic turbulent atmosphere are less disturbed than Gaussian beam. |
来源
|
量子电子学报
,2019,36(3):270-277 【扩展库】
|
DOI
|
10.3969/j.issn.1007-5461.2019.03.003
|
关键词
|
大气光学
;
光束漂移
;
拓展的惠更斯-菲涅尔原理
;
圆对称阵列光束
|
地址
|
1.
安徽师范大学物理与电子信息学院, 安徽省光电材料科学与技术重点实验室, 安徽, 芜湖, 241002
2.
中国科学院西安光学精密机械研究所, 瞬态光学与光子技术国家重点实验室, 陕西, 西安, 710119
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1007-5461 |
学科
|
物理学 |
基金
|
瞬态光学与光子技术国家重点实验室开放基金
;
大学生创新创业训练计划
|
文献收藏号
|
CSCD:6501516
|
参考文献 共
20
共1页
|
1.
Wang H. Propagation properties of radial partially coherent flat-topped array beams in a turbulent atmosphere.
Optics Communications,2010,283(21):4178-4189
|
CSCD被引
5
次
|
|
|
|
2.
Qu J. M~2 factor of flattened radial Gaussian laser beam array in turbulent atmosphere.
量子电子学报,2010,27(6):669-676
|
CSCD被引
2
次
|
|
|
|
3.
Hu M. Theory and experiments of generation of arbitrary order nondiffractiong beams array by phase holograms.
量子电子学报,2011,28(2):157-162
|
CSCD被引
1
次
|
|
|
|
4.
Li C. Propagation properties of nonparaxial radial array Gaussian laser beams.
强激光与粒子束,2012,24(5):1019-1023
|
CSCD被引
1
次
|
|
|
|
5.
Yousefi M. Analyzing the average intensity distribution and beam width evolution of phase-locked partially coherent radial flat-topped array laser beams in oceanic turbulence.
Laser Physics,2017,27(2):026202
|
CSCD被引
3
次
|
|
|
|
6.
Eyyuboglu H T. Scintillations of laser array beams.
Applied Physics B,2008,91(2):265-271
|
CSCD被引
9
次
|
|
|
|
7.
Zhang Y.
FSO系统中阵列光束在大气湍流中的传输特性研究,2017
|
CSCD被引
1
次
|
|
|
|
8.
Ji X. Influence of atmospheric turbulence on the spreading and directionality of radial Gaussian array beams.
物理学报,2010,59(1):692-698
|
CSCD被引
1
次
|
|
|
|
9.
Cai Y. Propagation of laser array beams in a turbulent atmosphere.
Applied Physics B,2007,88(3):467-475
|
CSCD被引
29
次
|
|
|
|
10.
Grechko G M. Anisotropy of spatial structures in the middle atmosphere.
Advances in Space Research,1992,12(10):169-175
|
CSCD被引
2
次
|
|
|
|
11.
Robert C. Retrieving parameters of the anisotropic refractive index fluctuations spectrum in the stratosphere from balloon-borne observations of stellar scintillation.
Journal of the Optical Society of America A Optics Image Science and Vision,2008,25(2):379-393
|
CSCD被引
4
次
|
|
|
|
12.
Otten L J. High bandwidth atmospheric turbulence data collection platform.
SPIE. 3866,1999:22-31
|
CSCD被引
1
次
|
|
|
|
13.
Wang F. Random optical beam propagation in anisotropic turbulence along horizontal links.
Optics Express,2016,24(21):24422-24434
|
CSCD被引
2
次
|
|
|
|
14.
Lu B. Beam propagation properties of radial laser arrays.
Journal of the Optical Society of America A Optics Image Science and Vision,2000,17(11):2005-2009
|
CSCD被引
6
次
|
|
|
|
15.
Xiao X. Gaussian beam propagation in anisotropic turbulence along horizontal links: Theory, simulation, and laboratory implementation.
Applied Optics,2016,55(15):4079-4084
|
CSCD被引
3
次
|
|
|
|
16.
Yao M. Propagation of electromagnetic stochastic beams in anisotropic turbulence.
Optics Express,2014,22(26):31608-31619
|
CSCD被引
5
次
|
|
|
|
17.
Wang J. Second-order statistics of a radially polarized cosine-Gaussian correlated Schell-model beam in anisotropic turbulence.
Optics Express,2016,24(11):11626-11639
|
CSCD被引
4
次
|
|
|
|
18.
Toselli I. Introducing the concept of anisotropy at different scales for modeling optical turbulence.
Journal of the Optical Society of America A,2014,31(8):1868-1875
|
CSCD被引
10
次
|
|
|
|
19.
Siegman A E. New developments in laser resonators.
SPIE. 1224,1990:2-14
|
CSCD被引
9
次
|
|
|
|
20.
Yu S. Beam wander of electromagnetic Gaussian-Schell model beams propagating in atmospheric turbulence.
Applied Optics,2012,51(31):7581-7585
|
CSCD被引
6
次
|
|
|
|
|